
YaX
Paul Isambert
1/22/2011

v.1.03

YaX is Yet Another Key System, or YaX Ain't Keys, however you want it. It has some peculiari-
ties. First, keys are not keys, but attributes, which means they depend on a parameter. You
don't set key individually in YaX (although you can do it), you define parameters, which have
attributes, which have values. Second, parameters can have definitions, so that when you
set it you can also execute a command, or execute it later ; thus, YaX is halfway between key
management and macro definition. Finally, the syntax of YaX is not traditional : there are as
few braces as possible, which you can find tremendously annoying, but it can be changed.

And, of course, YaX is format-independant. Files are provided for LaTEX and ConTEXt, so
you can input it with \usepackage{yax} or \usemodule[yax] respectively ; anywhere else
just use \input yax.

•\yaxversion Starting with version 1.01, this macro holds YaX's version. Current is 1.03.

Setting parameters
Here's an example of how values are set :

\setparameter Zappa:

firstname = Frank

motto = "Music is the best"

hairstyle = \moustache

Here we have defined a parameter, `Zappa', which has attributes `firstname', `motto' and
`hairstyle' with values `Frank', `Music is the best' and `\moustache' respectively.

\setparameter Here's how you set parameters more precisely. (This command is not the only way to set
values. See below.) Its simplified syntax is as follows :

\setparameter<list of parameters> :

<list of attributes> = <value>

<list of attributes> = <value>

...

\par

1



First, the \par command that terminates the declaration : it was not chosen simply because
it echoes parameter, but above all because it can be implicit in a blank line, i.e. \setparam-
eter can be delimited by a blank line. That's why in the first example there seemed to be
nothing delimitating \setparameter : it is supposed to be followed by a blank line. I will
regularly display parameter setting in this fashion, even though the following would be
equally legitimate :

\setparameter Zappa: firstname = Frank ... \par

barring readibility, obviously.
As for the detail, <list of parameters> is a list of space-delimited parameters, followed

by a colon. Any space before the colon is removed, that's why

\setparameter Zappa Boulez: ... \par

\setparameter Zappa Boulez: ... \par

set the attributes of the same Zappa and Boulez parameters. Which means, of course, that
you can set the attributes of as many parameters as you wish by doing so.

The name of each parameter should be fully expandable. It can contain spaces, but
then it should be enclosed between braces, since space delimits parameters in <list of

parameters> .
Finally, you can use \setparameter several times on the same parameter(s), by default

it does the same thing as using one big \setparameter. I say by default, because things might
occur between the two calls, e.g. the parameter might be active and have deleted its own
attributes after the first call, which anyway is something we'll see later.

Like <list of parameters> , <list of attributes> is a list of space-delimited at-
tributes. Each <attribute> is made of the same thing as a <parameter> : i.e. anything
expandable. However, at the beginning of a <list of attributes> , the strings e :, g : and
x: have a special meaning : these prefixes are used to specify how an attribute or list of
attributes is to be defined, and they are similar to \edef, \gdef and \xdef (with no prefix
meaning \def), i.e.:

\setparameter foo:

one = \whatever

e: two = \whatever

g: three = \whatever

x: four five = \whatever

defines, for the parameter foo, the attributes one and three as \whatever and the attributes
two, four and five as the full expansion of \whatever ; moreover, one and two are locally
defined, whereas three, four and five are globally defined. The space between the prefix and
the name of the parameter is optional.

2



Finally, <value> may be given in three ways. First, it can be delimited by a space, e.g.:

\setparameter Zappa:

firstname = Frank

motto = {Music is the best}

...

here the space is simply the end of the line. The spaces in Music is the best aren't seen,
because of the braces (which will be removed from the value). Don't forget that control
sequences eats the subsequent space, hence a control sequence can't be at the end of a value
supposedly delimited by space without braces. Actually, it can't be at the beginning either
(see below).

Otherwise, <value> can be given between double quotes :

\setparameter Zappa:

firstname = "Frank"

motto = "Music is the best"

hairstyle = "\mustache"

which basically act as braces. The space inserted here by the end of the line is optional and
the following can be done :

\setparameter Zappa:firstname="Frank"motto="Music is the best"...\par

Finally, there's a special rule. Control sequences gobble the next space, but a <value> can be
made of one and only one control sequence, e.g.:

\setparameter Zappa:

hairstyle = \mustache

...

i.e. if YaX sees a control sequence at the beginning of a value it will take this control sequence
only as <value>, which means that anything thereafter will be considered as belonging to the
next <parameter> name. Hence, all the following are bad ideas :

\setparameter bad values:

% the space stops the value to "bad"

one = bad space

% the control sequence is taken as the only token

two = \control sequence

% "\sequence" eats the delimitating space

three = control\sequence

3



but they'd all be ok with quotes or braces (which still require a space after) :

\setparameter good values:

one = "bad space"

two = "\control sequence"

three = {control\sequence}

four = \LonelyCommand

five = "\Command\Command"

...

Finally, they are some exceptions to this rule : first, always put \par between braces, otherwise
it will be seen as the end of the parameter. Second, always put a character denotation between
either braces or quotes, even if it's the only control sequence. If you don't knowwhat character
denotation means, never mind. Just remember that \bgroup and \egroup are character
denotations.

Now I'm sure you ask : what is this lousy syntax ? An answer is I don't like braces. Another
answer is YaX is not designed to store complicated strings, although it can do it. Instead it
aims at setting simple values in an orderly fasion, e.g.:

\setparameter page:

pagewidth = 30cm

pageheight = 32cm

top bottom = 2cm

lines = 45

whatever = \foo

...

in which case it is very handy, especially when you're in a hurry :

\setparameter page: pagewidth=32cm pageheight=30cm whatever=\foo...\par

Thus, I find commas to delimit values equally superfluous and find the odd quote better.
However, good old key-value pairs separated by commas happen to be useful too, for

instance when a command takes some options. Hence the following was introduced in v.1.03 :

\setparameterlist<list of parameters>[<optional macro>]<attribute(s) = value list>

This produces exactly the same thing as \setparameter, only the syntax changes. Ignoring
the optional argument in the middle, our example just above would be rewritten as :

\setparameterlist{page}{pagewidth = 32cm, pageheight = 30cm, whatever=\foo}

Here you can forget about how values are given : the delimiter is the comma, end of story.

4



There can be several parameters in the first argument, and several attributes before each
`=' sign in the second ; in both cases, they are separated by spaces, as above. Also, each list
of attributes can be prefixed with e :, g : and x :, again as with \setparameter. Finally, as
shown in the example, space is trimmed away.

But \setparameterlist has a feature that \setparameter doesn't have. If one of the
<attribute>= <value> pair doesn't contain a `=', i.e. if it isn't a pair at all, then one of the
following happens : if there is no <optional macro>, then the default value `true' is assigned
to all the attributes mentionned ; besides, the entry can still be prefixed with e :, g : or x :.
For instance, the following two statements are equivalent :

\setparameterlist{Zappa}{guitarist composer}

\setparameterlist{Zappa}{guitarist composer = true}

On the other hand, if the <optional macro> is present, then it should take one ar-
gument, and the entry is passed to it (trimmed, though). What happens then is none of
YaX's concern, although of course the macro can itself set parameters. For instance, in the
following, a and b will be set to `what' and `are you kidding', whereas `eddie ?' is passed to
\dosomething.

\def\dosomething#1{ ... #1 ... }

\setparameter{whatever}[\dosomething]{a = what, b = are you kidding, eddie?}

Another way to set a parameter is as follows :

\copyparameter<list of parameters> :<parameter><space>
\gcopyparameter<list of parameters> :<parameter><space>

All the attributes of the parameters in <list of parameters> are copied to <parameter> ; if
the latter already has some attributes, they're aren't deleted (but you can use \deleteparam-
eter beforehand, see below) although they might be overwritten. If several parameters in
<list of parameters> have the same attribute, the value of the last parameter in the list
wins.The difference between the two versions is that the second is global.The space shouldn't
be forgotten, it's the same as explained in the <parameter>:<attribute> syntax below.

Finally, here's one fast way of setting a single attribute :

\setattribute<parameter>:<attribute>=<value><space>
\esetattribute<parameter>:<attribute>=<value><space>
\gsetattribute<parameter>:<attribute>=<value><space>
\xsetattribute<parameter>:<attribute>=<value><space>

This sets <attribute> (no list) for <parameter> (no list) to <value> ; see below for the
<parameter>:<attribute> syntax. Note that the <space> is for real, so don't forget it. The
`=' sign may be surrounded by optional space. This command can be used instead of \setpa-
rameter for two reasons : first, it is much faster (because it doesn't take lists into account) ;

5



second, if <parameter> is active it is not executed (see the section Defining parameters). The
e-, g- and x-versions sets the attribute with the e :, g : and x : prefixes respectively.

\deleteattribute<parameter>:<attribute>

\gdeleteattribute<parameter>:<attribute>

This deletes <parameter>:<attribute> , which now responds negatively to all previous
commands, as if it was never defined. The second version makes this deletion global, the first
keeps it local.

\deleteparameter<list of parameters> :
\gdeleteparameter<list of parameters> :

This deletes all paramaters in <list of parameters> ; it is equivalent to using the previous
command on all the parameters' attributes. The first version is local, the second is global.
And yes, the colon is really there, although it might get away.

Themeta attribute
You can give any attribute to any parameter (unless they're restricted, but that's not the point
for the time being). However, there's one particular attribute which has a special meaning :
meta. The value of meta should be another parameter. Then, when querying the value of an
attribute, say attr, for a given parameter, say param, YaX will do the following : if param has
attr, it is returned. Otherwise, if param has a meta attribute, whose value is for instance
metaparam, then attr is queried for the value of metaparam. And if metaparam has no attr

but has a meta attribute, this process continues, until either a parameter is found with attr

or there are no new meta. For instance :

\setparameter A: attr = value ... \par

\setparameter B: meta = A ... \par

\setparameter C: meta = B ... \par

If parameter C has no attr, then it retrieves it from parameter A via B (or from B if it has
one). On the other hand, if C has attr, then its own value is returned. You can also query the
value of an attribute for a parameter and forbid the search for meta's, as explained in the
next section.

Don't be afraid to create loop with meta. The following is perfectly legitimate :

\setparameter A: meta = C ... \par

\setparameter B: meta = A ... \par

\setparameter C: meta = B ... \par

and it can even be useful. YaX detects loops when searching meta paths and stops in time
(with no value, obviously). Finally, you can set meta to a parameter that doesn't exist. It will
simply return no value.

6



The use of meta is useful to create families of parameters and/or to set default values,
e.g.:

\setparameter mammal:

egg = no

fur = yes

...

\setparameter cat whale:

meta = mammal

...

\setparameter cat: \setparameter whale:

foot = clawed fur = no

tooth = fang foot = flipper

... tooth = baleen

...

\setparameter tiger mykitty:

meta = cat

stripped = yes

...

\setparameter tiger: \setparameter mykitty:

foot = "very bad news" foot = "bad news"

... ...

Apart from that, meta behaves as any other attribute, i.e. it can be freely set and queried.

Using values
Once attributes have been set, they can be queried by the macros that follow. But first, one
last bit of odd syntax : <parameter>:<attribute> means anything up to the colon as the
<parameter> and then anything up to the next space as the <attribute> . That's the reason
why space in attribute names is a bad idea : the space is the main delimitator when using
attributes. It is gobbled in the process. On the other hand, any space surrounding the colon
is removed, so that `zappa :hairstyle ' and `zappa : hairstyle ' denote the same attribute
of the same parameter. Good news, though : if you don't like that syntax, the next section
explains how to create commands with the same meaning but a different syntax.

In what follows, fully expandable commands are marked with •.

•\nometa<command>
All the commands that follow except \parameterloop can be prefixed with \nometa. In
this case, YaX will return the value of the attribute for the specified parameter, as usual,
or return no value, i.e. it will not search meta parameters. So, in what follows, `<param-
eter>:<attribute> is defined' means two things. If \nometa isn't used, it means that

7



<parameter> has <attribute> or it has a metaparameter with <attribute> ; on the other
hand, if \nometa is used, it means that <parameter> has <attribute> , end of story.

•\ifattribute<parameter>:<attribute><true><false>
This returns <true> if <parameter>:<attribute> is defined, <false> otherwise. Since all
commands below always check whether <parameter>:<attribute> is defined before trying
to do anything with the value, this command can be avoided most of the time.

\setparameter musician: job = music\par

\setparameter Zappa:

meta = musician

firstname = Frank

% See this space?

\ifattribute Zappa: job {Good, it is.}{...}\par

\nometa\ifattribute Zappa: job {...}{Too bad.}

Good, it is.
Too bad.

•\usevalue<parameter>:<attribute>
•\usevalueor<parameter>:<attribute><no value>

•\usevalueand<parameter>:<attribute><value exists><no value>

The first macro returns the value of <parameter>:<attribute> if it exists, or does nothing
otherwise. Like all the -or and -and variants below, \usevalueor executes <no value> in
case <parameter>:<attribute> doesn't exist, while \usevalueand returns the value of
<parameter>:<attribute> immediately followed by <value exists> (no brace added) if
<parameter>:<attribute> exists, otherwise it executes <no value> .

Zappa's job was \usevalueand Zappa: job

{ (and then some!)}

{unknown}

and he played the \usevalueor Zappa: instrument

{guitar}.

Zappa's job was music (and then some !) and
he played the guitar.

•\passvalue<code><parameter>:<attribute>
•\passvalueor<code><parameter>:<attribute><no value>

•\passvalueand<code><parameter>:<attribute><value exists><no value>

These return <code>{<value>} if <parameter>:<attribute> is defined, with the -or and
-and variants as above.

8



\def\whichwas#1{(which was #1)}

Zappa's job \passvalue\whichwas Zappa: job \ took

most of his time, because it's a time-consuming

occupation \nometa\passvalueor\whichwas Zappa: job

{(you know which)}.

Zappa's job (which was music) took most of
his time, because it's a time-consuming occu-
pation (you know which).

•\passvaluenobraces<code><parameter>:<attribute>
•\passvaluenobracesor<code><parameter>:<attribute><no value>

•\passvaluenobracesand<code><parameter>:<attribute><value exists><no value>

These are the same as \passvalue and variants except the value of the attribute is concate-
nated to <code> without braces (which means that no braces are added in the process, not
that braces are removed from the value if it has any).

\settovalue<dimen or count><parameter>:<attribute>

\settovalueor<dimen or count><parameter>:<attribute><no value>

\settovalueand<dimen or count><parameter>:<attribute><value exists><no value>

This sets the first argument to the value of <parameter>:<attribute> if it exists. If the first
argument is more than one token (e.g. \count0 vs. \parindent), it must be surrounded by
braces ; and actually it can even be something like \advance\count0. Of course <dimen or

count> must be a dimension or a count, and the value of <parameter>:<attribute> must
be accordingly a dimension or a number (YaX doesn't check either of them).

\setparameter para: parskip = 2pt \par

Note that

\settovalueor\parskip para: parskip

{\parskip=1pt\relax}

(\the\parskip) is basically the same thing as

\parskip=\usevalueor para: foo {1pt\relax}

(\the\parskip).

Note that (2.0pt) is basically the same thing
as (1.0pt).

What the previous example shows is that since \usevalue is thoroughly expandable one
can say :

\mydimen=\usevalueor parameter: attribute {0pt}

and it will set \mydimen to the value of <parameter>:<attribute> or to 0pt. The difference
with \settovalueor is that in the construction with \usevalueor the assignement is obli-
gatorily made (hence the -or variant), whereas with \settovalueor the or-clause can do
something else (e.g. send an error message). And \settovalue insert a prophylactic \relax.

9



\storevalue<command><parameter>:<attribute>

\storevalueor<command><parameter>:<attribute><no value>

\storevalueand<command><parameter>:<attribute><value exists><no value>

These define <command> as the value of <parameter>:<attribute> if it exists.

\setparameter Zappa: hairstyle = \moustache\par

\storevalue\beard Zappa: hairstyle

\meaning\beard

macro :->\moustache

•\ifvalue<parameter>:<attribute>=<value> <true><false>

This returns <true> if the value of <parameter>:<attribute> is <value> and <false>

otherwise (including unexisting <parameter>:<attribute> ). Note that when comparing the
value of <parameter>:<attribute> with <value> , catcodes aren't part of the picture. Here
<value> is delimited by the following space, but there might be optional space after the `='
sign. Because of this, it is not possible to test for the emptyness of a value with \ifvalue, i.e.

\ifvalue foo: bar = {} {true}{false}

won't work. Instead, either use \ifcasevalue below or \passvaluewith an emptyness-tester
(e.g. texapi's \ifemptystring, since YaX is based on texapi (what, me, self-advertising ?)).

\bgroup \catcode`\Z=13

\setparameter foo: g: bar = Z \par

\egroup

\edef\foobar{%

\ifvalue foo: bar = Z {yes}{no},

even though catcodes are different.}

\meaning\foobar

macro :->yes, even though catcodes are differ-
ent.

•\ifcasevalue<parameter>:<attribute>
\val<value> <code>

\val<value> <code>

...

\elseval<code>

\endval

This executes <code> following <value> matching the value of <parameter>:<attribute> . If

10



<parameter>:<attribute> doesn't exist, or matches no <value> , then \elseval is executed.
Once again catcodes aren't taken into account when values are compared. The exact syntax
is : <value> is anything from \val to the next space, and <code> is anything that follows up
to the next \val, \elseval or \endval (any space on the right is removed, so no need to
stick \val to <code> ). Apart from \endval, everything here is optional : there might be as
many \val-clauses as needed, including none, and the \elseval-clause need not be present
(in which case, if no match occurs, nothing happens). Finally, although this is similar to TEX's
primitive \ifcase, there's no need to jump before anything with \expandafter to avoid
bumping into conditional structure.

\def\doitalic#1{{\it#1}}

\setparameter type: font = italic \par

\ifcasevalue type: font

\val italic \doitalic

\val bold \dobold

\endval{Some text.}

\edef\foo{%

\ifcasevalue type: font

\val bold This is bold

\elseval This is something else

\endval}

\meaning\foo

Some text.
macro :->This is something else

•\parameterloop<list of parameters> :<code>
This loops on all the attributes for all the parameters in <list of parameters> , and passes
the following thing to <code> : the parameter, the attribute, and the value. Hence <code>
can be anything, but it should be prepared to handle three arguments. The order in which
parameters are enumerated is the order in <list of parameters> , and for attributes it is the
order in which they were set for a given parameter. Only actual attributes are enumerated : if
you loop over ParameterA, which doesn't have AttributeA but has a meta parameter with
that attribute, then AttributeA will not be enumerated in the loop.

11



\setparameter musician: job = music\par

\setparameter zappa:

meta = musician

instrument = guitar

\def\showvalues#1#2#3{#1: #2 = #3\par}

\parameterloop musician zappa: \showvalues

musician : job = music
zappa : meta = musician
zappa : instrument = guitar

Using another syntax
If you don't like YaX's native syntax, and want for instance good old braces to delimit <pa-
rameter> and <attribute> , you might be tempted to do something like :

\def\myusevalue#1#2{\usevalue #1:#2 }

On the other hand, if you don't mind YaX's syntax but want other names for the commands,
then you'll probably go :

\let\myusevalue\usevalue

Both are bad ideas. Indeed, in neither example will \myusevaluework properly with \nometa.
Besides, you have to create the -or and -and variants by hand. Not to mention that in the
first example \myusevalue wastes time calling \usevalue (and what if it is redefined ?) when
it could be in direct relation with internal code. So here's how to circumvent YaX's syntax
and/or create new names.

\newsyntax<syntax>{<prefix>}

This creates commands whose names are \<prefix><command> and whose syntax for ar-
guments is <syntax>. The latter is a parameter text which must contain #1 and #2 (for
<parameter> and <attribute> respectively) with whatever to delimit them. For instance :

\newsyntax#1#2{x}

\newsyntax#1 #2!{y}

will create among others an \xusevalue command whose usage is \xusevalue<parame-
ter><attribute> and a \yusevalue command whose usage is \yusevalue<parameter>
<attribute>! and both will do the same thing as \usevalue. There must be braces around
<prefix> and none around <syntax> (i.e. the latter is delimited by the left brace of the
former). If <prefix> is empty, you redefine the default commands, which is dangerous.

To be precise, the commands copied are (omitting the -or and -and variants, which are
created too, if any) : \setattribute, \esetattribute, \gsetattribute, \xsetattribute,

12



\ifattribute, \usevalue, \passvalue, \passvaluenobraces, \settovalue, \storevalue,
\ifvalue, \ifcasevalue, \deleteattribute and \restrictattribute (which you'll learn
about in the next section).

\copysyntax<prefix1><prefix2>

This defines all the commands above with <prefix1> as those same commands with <pre-

fix2>.

\letyaxcommand<command1><command2>

This at the very least \let<command1> to <command2>. Besides, if <command2> can take a
\nometa prefix, <command1> can too. Finally, if <command2> has -or and -and variants, these
are created with <command1>. E.g.:

\letyaxcommand\defval\storevalue

defines \defval, \defvalor and \defvaland as \storevalue and its variants. If <command2>
has been created with \newsyntax or \copysyntax, <command1> of course has the same
syntax.

\newsyntax#1#2{x}

\letyaxcommand\uv\xusevalue

\uvand{noparameter}{noattribute}{yes}{no}

no

Restrictions on parameters and attributes

\restrictparameter<list of parameters> :<list of attributes>\par

After this declaration, the <parameter> 's in <list of parameters> (where they are sepa-
rated by space as in \setparameter) can take only those <attribute> 's in <list of at-

tributes> (which are also separated by space). It affects \setparameter only, producing
an error message when an <attribute> not belonging to <list of attributes> is given
a value (and the assignment isn't made, of course). Even if it doesn't belong to <list of

attributes> , the meta attribute is always allowed. Several \restrictparameter decla-
rations on the same parameter(s) actually accumulate the allowed attributes in <list of

parameters> , e.g. after

\restrictparameter foo: one two three\par

\restrictparameter foo: four\par

one can set the attributes one, two, three and four for foo, and not only four. The idea

13



behind \restrictparameter is not so much hiding attributes from the user as making the
use of a parameter clearer by indicating which attributes are in use with it, especially if it can
be executed (see below).

\restrictattribute<parameter>:<attribute> <list of values>\par

This restricts <parameter>:<attribute> to take only the values in <list of values>

(separated by space).

\restrictallattributes<attribute> <list of values>\par

This restricts <attribute> , whatever the <parameter> in which it appears, to take only the
values in <list of values> . In this command, <attribute> is found as anything before
the first space, e.g.:

\restrictallattributes attribute value1 value2 value3\par

\restrictallattributes {attri bute} value1 value2 value3\par

(the second example if you want to have space in attribute names). Note that if an attribute
is restricted with both \restrictattribute and \restrictallattributes, only the former
restriction holds. E.g.:

\restrictattribute foo:bar one\par

\restrictallattributes bar two three\par

\setparameter foo:

bar = two % Will produce an error message.

...

Defining parameters

\defparameter<list of parameters>{<definition>}

Parameters aren't just a way of organizing attributes. They can have a definition and act as
commands whose arguments are the values of their attributes. The <list of parameters>

(with parameters once again separated by space) must be braceless, whereas <definition>
must be enclosed in braces (like a real definition). No parameter text is allowed. However,
<definition> can contain `#1', which doesn't refer to any argument but to the parameter
being defined instead, so that one can use the commands defined in the previous section
without specifying the name of the parameter. E.g.

\defparameter foo bar {%

\usevalue #1: one

\passvalueor\mycomm #1: whatever {...}%

...}

14



defines foo and bar respectively to

\usevalue foo: one

\passvalueor\mycomm foo: whatever {...}%

...

\usevalue bar: one

\passvalueor\mycomm bar: whatever {...}%

...

•\executeparameter<parameter> :
This executes the definition of <parameter> with the the latest values of its attributes. If
<parameter> hasn't been defined, nothing happens.

\defparameter foo {The value is \usevalue#1:bar }

\setparameter foo: bar = whatever\par

\executeparameter foo:

The value is whatever

\defactiveparameter<list of parameters>{<definition>}

This does the same thing as \defparameter, i.e. define the parameters in <list of parame-

ters> , but it also set them as `active,' which means that they're automatically executed each
time their attributes are defined with \setparameter. You can still use \executeparameter.

\setparameter metasection: skip = 2 font = \it\par

\setparameter mysection: % not yet active

meta = metasection\par

\defactiveparameter mysection {%

\vskip \usevalueor #1: skip 0\baselineskip

{\usevalue #1: font \usevalue #1: title }%

\par}

And now we're going to have a new section.

\setparameter mysection: title = "A new section"\par

Fascinating. Once again?

\setparameter mysection: title = "Once again"\par

Cool.

And now we're going to have a new section.

A new section
Fascinating. Once again ?

Once again
Cool.

15



\setparameter metasection:

skip = 2

inline = false

font = \it

\setparameter mysection mysubsection:

meta = metasection

\setparameter mysection:

font = \sc

\setparameter mysubsection:

skip = 1

inline = true

\defparameter mysection mysubsection {%

\vskip \usevalueor #1: skip 0\baselineskip

{\usevalue #1: font \usevalue #1: title }%

\ifvalue #1: inline = true {. \ignorespaces}%

\par}%

\def\section#1{%

\setparameter mysection: title = {#1}\par

\executeparameter mysection:}

\def\subsection#1{%

\setparameter mysubsection: title = {#1}\par

\executeparameter mysubsection:}

... and this is the end of our paragraph.

\section{New ideas}

Here we are going to expose bold new ideas.

\subsection{First bold new idea}

Lore, aim, hip, sum... what do you think about

it? Pig latin, you say?

\subsection{Second bold new idea}

Perhaps Do lore, aim... then, huh?

\section{New new ideas}

Etc.

... and this is the end of our paragraph.

New ideas
Here we are going to expose bold new ideas.

First bold new idea. Lore, aim, hip, sum... what
do you think about it ? Pig latin, you say ?

Second bold new idea. Perhaps Do lore, aim...
then, huh ?

New new ideas
Etc.

16


	Setting parameters
	\setparameter 
	\setparameterlist 
	\copyparameter 
	\setattribute 
	\deleteattribute 
	\deleteparameter 

	The meta attribute
	Using values
	\nometa 
	\ifattribute 
	\usevalue 
	\passvalue 
	\passvaluenobraces 
	\settovalue 
	\storevalue 
	\ifvalue 
	\ifcasevalue 
	\parameterloop 

	Using another syntax
	\newsyntax 
	\copysyntax 
	\letyaxcommand 

	Restrictions on parameters and attributes
	\restrictparameter 
	\restrictattribute 
	\restrictallattributes 

	Defining parameters
	\defparameter 
	\executeparameter 
	\defactiveparameter 


