The 1tcmdhooks module*

Frank Mittelbach Phelype Oleinik
August 22, 2024

Contents
1 Introduction 1
2 Restrictions and Operational details 2
2.1 Patching 3
2.1.1 Timingo 3
2.2 Commands that look ahead 3
3 Package Author Interface 4
3.1 Arguments and redefining commands 5
4 The Implementation 5
4.1 Executionplan L o e 5
4.2 Variables 6
4.3 Variants oL Lo e 7
4.4 Patching or delaying 7
4.5 Patching commands Lo L L 9
4.5.1 Patching by expansion and redefinition. 10
4.5.2 Patching by retokenization 18
4.6 Messageso e e e e e e e 24
Index 25

1 Introduction

This file implements generic hooks for (arbitrary) commands. In theory every command
\(name) offers now two associated hooks to which code can be added using \AddToHook,
\AddToHookNext, \AddToHookWithArguments, and \AddToHookNextWithArguments.’
These are:

*This file has version v1.0j dated 2024/07/08, © XTEX Project.

In this documentation, when something is being said about \AddToHook, the same will be valid for
\AddToHookWithArguments, unless that particular paragraph is highlighting the differences between both.
The same is true for the other hook-related functions and their ...WithArguments counterparts.

2In practice this is not supported for all types of commands, see section 2.2 for the restrictions that
apply and what happens if one tries to use this with commands for which this is not supported.

cmd/(name)/before This hook is executed at the very start of the command, right
after its arguments (if any) are parsed. The hook (code) runs in the com-
mand inside a call to \UseHookWithArguments. Any code added to this hook
using \AddToHookWithArguments or \AddToHookNextWithArguments can access
the command’s arguments using #1, #2, etc., up to the number of arguments of the
command. If \AddToHook or \AddToHookNext are used, the arguments cannot be
accessed (see the Ithooks documentation® on hooks with arguments).

cmd/(name)/after This hook is similar to cmd/(name)/before, but it is executed at the
very end of the command body. This hook is implemented as a reversed hook.

The hooks are not physically present before \begin{document}* (i.e., using a com-
mand in the preamble will never execute the hook) and if nobody has declared any code
for them, then they are not added to the command code ever. For example, if we have
the following definition

\newcommand\foo[2]{Code #1 for #2!}

then executing \foo{A}{B} will simply run Code_ A _for B! as it was always the case.
However, if somebody, somewhere (e.g., in a package) adds

\AddToHook{cmd/foo/before}{<before code>}
then, after \begin{document} the definition of \foo will be:

\renewcommand\foo [2]{%
\UseHookWithArguments{cmd/foo/beforer{2{#1}{#2}%
Code #1 for #2!}

and similarly \AddToHook{cmd/foo/after}{<after code>} alters the definition to

\renewcommand\foo [2] {%
Code #1 for #2!9,
\UseHookWithArguments{cmd/foo/after}{2}{#1}{#2}}

In other words, the mechanism is similar to what etoolbox offers with \pretocmd
and \apptocmd with the important differences

o that code can be prepended or appended (i.e., added to the hooks) even if the
command itself is not (yet) defined, because the defining package has not been
loaded at this point;

e and that by using the hook management interface it is now possible to define how
the code chunks added in these places are ordered, if different packages want to
add code at these points.

2 Restrictions and Operational details
Adding arbitrary material to commands is tricky because most of the time we do not

know what the macro expects as arguments when expanding and TEX doesn’t have a
reliable way to see that, so some guesswork has to be employed.

3texdoc 1thooks-doc
4More specifically, they are inserted in the commands after the begindocument hook, so they are also
not present while IATEX is reading the .aux file.

2.1 Patching

The code here tries to find out if a command was defined with \newcommand or
\DeclareRobustCommand or \NewDocumentCommand, and if so it assumes that the ar-
gument specification of the command is as expected (which is not fail-proof, if someone
redefines the internals of these commands in devious ways, but is a reasonable assump-
tion).

If the command is one of the defined types, the code here does a sandboxed expansion
of the command such that it can be redefined again exactly as before, but with the hook
code added.

If however the command is not a known type (it was defined with \def, for exam-
ple), then the code uses an approach similar to etoolbox’s \patchcmd to retokenize the
command with the hook code in place. This procedure, however, is more likely to fail if
the catcode settings are not the same as the ones at the time of command’s definition,
so not always adding a hook to a command will work.

2.1.1 Timing

When \AddToHook (or its expl3 equivalent) is called with a generic cmd hook, say,
cmd/foo/before, for the first time (that is, no code was added to that same hook be-
fore), in the preamble of a document, it will store a patch instruction for that command
until \begin{document}, and only then all the commands which had hooks added will
be patched in one go. That means that no command in the preamble will have hooks
patched into them.

At \begin{document} all the delayed patches will be executed, and if the command
doesn’t exist the code is still added to the hook, but it will not be executed. After
\begin{document}, when \AddToHook is called with a generic cmd hook the first time,
the command will be immediately patched to include the hook, and if it doesn’t exist or
if it can’t be patched for any reason, an error is thrown; if \AddToHook was already used
in the preamble no new patching is attempted.

This has the consequence that a command defined or redefined after \begin{document}
only uses generic cmd hook code if \AddToHook is called for the first time after the def-
inition is made, or if the command explicitly uses the generic hook in its definition by
declaring it with \NewHookPair adding \UseHook as part of the code.?

2.2 Commands that look ahead

Some commands are defined in different “steps” and they look ahead in the input stream
to find more arguments. If you try to add some code to the cmd/(name)/after hook of
such command, it will not work, and it is not possible to detect that programmatically,
so the user has to know (or find out) which commands can or cannot have hooks attached
to them.

One good example is the \section command. You can add something to the
cmd/section/before hook, but if you try to add something to the cmd/section/after
hook, \section will no longer work. That happens because the \section macro takes
no argument, but instead calls a few internal ITEX macros to look for the optional and
mandatory arguments. By adding code to the cmd/section/after hook, you get in the
way of that scanning.

5We might change this behavior in the main document slightly after gaining some usage experience.

In such a case, where it is known that a specific generic command hook does not work
if code is added to it, the package author can add a \DisableGenericHook® declaration
to prevent this from happening in user documents and thereby avoiding obscure errors.

3 Package Author Interface

The cmd hooks are, by default, available for all commands that can be patched to add
the hooks. For some commands, however, the very beginning or the very end of the
code is not the best place to put the hooks, for example, if the command looks ahead for
arguments (see section 2.2).

If you are a package author and you want to add the hooks to your own com-
mands in the proper position you can define the command and manually add the
\UseHookWithArguments calls inside the command in the proper positions, and manually
define the hooks with \NewHookWithArguments or \NewReversedHookWithArguments.
When the hooks are explicitly defined, patching is not attempted so you can make sure
your command works properly. For example, an (admittedly not really useful) command
that typesets its contents in a framed box with width optionally given in parentheses:

\newcommand\fancybox{\@ifnextchar ({\@fancybox}{\@fancybox(5cm)}}
\def\@fancybox (#1)#2{\fbox{\parbox{#1}{#2}}}

If you try that definition, then add some code after it with
\AddToHook{cmd/fancybox/after}{<code>}

and then use the \fancybox command you will see that it will be completely broken,
because the hook will get executed in the middle of parsing for optional (...) argument.

If, on the other hand, you want to add hooks to your command you can do something
like:

\newcommand\fancybox{\@ifnextchar ({\@fancybox}{\@fancybox (5cm)}}
\def\@fancybox (#1)#2{\fbox{%
\UseHookWithArguments{cmd/fancybox/before}{2}{#1}{#21}/
\parbox{#1}{#2}%
\UseHookWithArguments{cmd/fancybox/after {2} {#1}{#2}}}
\NewHookWithArguments{cmd/fancybox/before}{2}
\NewReversedHookWithArguments{cmd/fancybox/after}{2}

then the hooks will be executed where they should and no patching will be at-
tempted. It is important that the hooks are declared with \NewHookWithArguments or
\NewReversedHookWithArguments, otherwise the command hook code will try to patch
the command. Note also that the call to \UseHookWithArguments{cmd/fancybox/before}
does not need to be in the definition of \fancybox, but anywhere it makes sense to insert
it (in this case in the internal \@fancybox).

Alternatively, if for whatever reason your command does not support the generic
hooks provided here, you can disable a hook with \DisableGenericHook’, so that when
someone tries to add code to it they will get an error. Or if you don’t want the error,
you can simply declare the hook with \NewHook and never use it.

6Please use \DisableGenericHook if at all, only on hooks that you “own”, i.e., for commands your
package or class defines and not second guess whether or not hooks of other packages should get disabled!
"Please use \DisableGenericHook if at all, only on hooks that you “own”, i.e., for commands your
package or class defines and not second guess whether or not hooks of other packages should get disabled!

The above approach is useful for really complex commands where for one or the
other reason the hooks can’t be placed at the very beginning and end of the command
body and some hand-crafting is needed. However, in the example above the real (and
in fact only) issue is the cascading argument parsing in the style developed long ago in
ETEX 2.09. Thus, a much simpler solution for this case is to replace it with the modern
\NewDocumentCommand syntax and define the command as follows:

\DeclareDocumentCommand\fancybox{D () {5cm}m}{\fbox{\parbox{#1}{#2}}3}

If you do that then both hooks automatically work and are patched into the right places.

3.1 Arguments and redefining commands

The code in ltcmdhooks does its best to find out how many arguments a given command
has, and to insert the appropriate call to \UseHookWithArguments, so that the arguments
seen by the hook are exactly those grabbed by the command (the hook, after all, is a
macro call, so the arguments have to be placed in the right order, or they won’t match).

When using the package writer interface, as discussed in section 3, to change the
position of the hooks in your commands, you are also free to change how the hook code
in your command sees its arguments. When a cmd hook is declared with \NewHook (or
\NewHookWithArguments or other variations of that), it loses its “generic” nature and
works as a regular hook. This means that you may choose to declare it without arguments
regardless if the command takes arguments or not, or declare it with arguments, even if
the command takes none.

However, this flexibility should not be abused. When using a nonstandard configu-
ration for the hook arguments, think reasonably: a user will expect that the argument
#1 in the hook corresponds to the argument’s first argument, and so on. Any other
configuration is likely to cause confusion and, if used, will have to be well documented.

This flexibility, however, allows you to “correct” the arguments for the hooks. For
example, INTEX’s \refstepcounter has a single argument, the name of the counter. The
cleveref package adds an optional argument to \refstepcounter, making the name of
the counter argument #2. If the author of cleveref wanted, for whatever reason, to add
hooks to \refstepcounter, to preserve compatibility he could write something along the
lines of:

\NewHookWithArguments{cmd/refstepcounter/before}{1}

\renewcommand\refstepcounter[2] [<default>]{%
\UseHookWithArguments{cmd/refstepcounter/before}{1}{#2}J
<code for \refstepcounter>}

so that the mandatory argument, which is arg #2 in the definition, would still be seen as
#1 in the hook code.

Another possibility would be to place the optional argument as the second argument
for the hook, so that people looking for it would be able to use it. In either case, it would
have to be well documented to cause as little confusion as possible.

4 The Implementation

4.1 Execution plan

To add before and after hooks to a command we will need to peek into the definition
of a command, which is always a tricky thing to do. Some cases are easy because we

\g_hook_patch_action_list_t1l

\1__hook_patch_num_args_int

\1__hook_patch_prefixes_tl
\1__hook_param_text_tl
\1__hook_replace_text_tl

know how the command was defined, so we can assume how its (parameter text) looks
like (for example a command defined with \newcommand may have an optional argument
followed by a run of mandatory arguments), so we can just expand that command and
make it grab #1, #2, etc. as arguments and define it all back with the hooks added.

Life’s usually not that easy, so with some commands we can’t do that (a #1 might
as well be #12112 instead of the expected #6112, for example) so we need to resort to
“patching” the command: read its \meaning, and tokenize it again with \scantokens
and hope for the best.

So the overall plan is:

1. Check if a command is of a known type (that is, defined with \newcommand®,
\DeclareRobustCommand, or \New(Expandable)DocumentCommand), and if is, take
appropriate action.

2. If the command is not a known type, we’ll check if the command can be patched.
Two things will prevent a command from being patched: if it was defined in a
nonstandard catcode setting, or if it is an internal expl3 command with __(module)
in its name, in which case we refuse to patch.

3. If the command was defined in nonstandard catcode settings, we will try a few
standard ones to try our best to carry out the pathing. If this doesn’t help either,
the code will give up and throw an error.

1 (@@=hook)

> (x2ekernel | latexrelease)

s \ExplSyntaxOn

s (latexrelease) \NewModuleRelease{2021/06/01}{1tcmdhooks}

5 (latexrelease) {The~hook~management~system~for~commands}

4.2 Variables

Pairs of \if<cmd>. .\patch<cmd> to be used with \robust@command@act when looking
for a known patching rule. This token list is exposed because we see some future appli-
cations (with very specialized packages, such as etoolbox that may want to extend the
pairs processed. It is not meant for general use which is why it is not documented in the
interface documentation above.

6 \tl_new:N \g_hook_patch_action_list_tl
(End of definition for \g_hook_patch_action_list_tl.)

The number of arguments in a macro being patched.

7 \int_new:N \1__hook_patch_num_args_int
(End of definition for \1__hook_patch_num_args_int.)

The prefixes and parameters of the definition for the macro being patched.

¢ \tl_new:N \1__hook_patch_prefixes_tl
9 \tl_new:N \1__hook_param_text_tl
10 \tl_new:N \1__hook_replace_text_tl

8It’s not always possible to reliably detect this case because a command defined with no optional
argument is indistinguishable from a \defed command.

(End of definition for \1__hook_patch_prefixes_t1, \1__hook_param_text_t1, and \1__hook_replace_-
text_tl.)

\c__hook_hash_tl Two constant token lists that contain one and two parameter tokens.
\c__hook_hashes_tl ,; \tl_const:Nn \c__hook_hash tl { # }
12 \tl_const:Nn \c__hook_hashes_t1 { # # }

(End of definition for \c__hook_hash_t1 and \c__hook_hashes_t1.)

__hook_exp_not:NN Two temporary macros that change depending on the macro being patched.
__hook_def_cmd:w \cs_new_eq:NN __hook_exp_not:NN ?
14 \cs_new_eq:NN __hook_def_cmd:w ?

(End of definition for __hook_exp_not:NN and __hook_def_cmd:w.)

\q__hook_recursion_tail Internal quarks for recursion: they can’t appear in any macro being patched.

\q__hook_recursion_stop \quark_new:N \q__hook_recursion_tail

16 \quark_new:N \g__hook_recursion_stop

(End of definition for \q__hook_recursion_tail and \q__hook_recursion_stop.)

\g_hook_delayed patches prop A list containing the patches delayed to \begin{document}, so that patching is not
attempted twice.

17 \prop_new:N \g__hook_delayed_patches_prop

(End of definition for \g__hook_delayed_patches_prop.)

__hook_patch_debug:x A helper for patching debug info.

15 \cs_new_protected:Npn __hook_patch_debug:x #1
19 { __hook_debug:n { \iow_term:x { [lthooks]~#1 } } }

(End of definition for __hook_patch_debug:x.)

4.3 Variants

\tl_rescan:nV expl3 function variants used throughout the code.

20 \cs_generate_variant:Nn \tl_rescan:nn { nV }

(End of definition for \tl_rescan:nV.)

4.4 Patching or delaying
Before \begin{document} all patching is delayed.

__hook_try_put_cmd_hook:n This function is called from within \AddToHook, when code is first added to a generic cmd
__hook_try_put_cmd_hook:w hook. If it is called within in the preamble, it delays the action until \begin{document};
otherwise it tries to update the hook.
21 (latexrelease) \IncludeInRelease{2021/11/15}{__hook_try_put_cmd_hook:n}}
22 (latexrelease) {Standardise~generic~hook~names}
23 \cs_new_protected:Npn __hook_try_put_cmd_hook:n #1
2 { __hook_try_put_cmd_hook:w #1 / / / \s__hook_mark {#1} }
»5 \cs_new_protected:Npn __hook_try_put_cmd_hook:w
2% #1 / #2 / #3 / #4 \s__hook_mark #5
{
__hook_debug:n { \iow_term:n { ->~Adding~cmd~hook~to~’#2’~(#3): } }

N
N

o
@

29 \exp_args:Nc __hook_patch_cmd_or_delay:Nnn {#2} {#2} {#3}
30 }

latexrelease) \EndIncludeInRelease

latexrelease) \IncludeInRelease{2021/06/01}{__hook_try_put_cmd_hook:n}}
latexrelease {Standardise~generic~hook~names}

latexrelease) \cs_new_protected:Npn __hook_try_put_cmd_hook:n #1
latexrelease) { __hook_try_put_cmd_hook:w #1 / / / \s__hook_mark {#1} }
latexrelease) \cs_new_protected:Npn __hook_try_put_cmd_hook:w

37 (latexrelease #1 / #2 / #3 / #4 \s__hook_mark #5

()
(lat)
()
()
()
()
()
55 (latexrelease) {

()
()
()
()
()
()

)

33
34
35

36

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease) }
s (latexrelease) \EndIncludeInRelease

__hook_debug:n { \iow_term:n { ->~Adding~cmd~hook~to~’#2’~(#3): } }
\str_case:nnTF {#3}
{ { before } { } { after } { } }
{ \exp_args:Nc __hook_patch_cmd_or_delay:Nnn {#2} {#2} {#3} }
{ \msg_error:nnnn { hooks } { wrong-cmd-hook } {#2} {#3} }

39
40
41
42
43

44

(End of definition for __hook_try_put_cmd_hook:n and __hook_try_put_cmd_hook:w.)

_hook patch cud or delay:lmn In the preamble, __hook_patch_cmd_or_delay:Nnn just adds the patch instruction to
_ hook cnd begindocunent code: & property list to be executed later.

26 \cs_new_protected:Npn __hook_patch_cmd_or_delay:Nnn #1 #2 #3

47 {

n __hook_debug:n { \iow_term:n { ->~Add~generic~cmd~hook~for~#2~(#3). } }
49 __hook_debug:n

50 { \iow_term:n { !~In~the~preamble:~delaying. } }

51 \prop_gput:Nnn \g__hook_delayed_patches_prop { #2 / #3 }

52 { __hook_cmd_try_patch:nn {#2} {#3} }

53 }

The delayed patches are added to a property list to prevent duplication, and the code
stored in the property list for each key is executed. The function __hook_patch_cmd_-
or_delay:Nnn is also redefined to be __hook_patch_command:Nnn so that no further
delaying is attempted.

s \cs_new_protected:Npn __hook_cmd_begindocument_code:

55 {

56 \cs_gset_eq:NN __hook_patch_cmd_or_delay:Nnn __hook_patch_command:Nnn
57 \prop_map_function:NN \g__hook_delayed_patches_prop { \use_ii:nn }

58 \prop_gclear:N \g__hook_delayed_patches_prop

59 \cs_undefine:N __hook_cmd_begindocument_code:

60 }

61 \g@addto@macro \@kernel@after@begindocument
62 { __hook_cmd_begindocument_code: }

(End of definition for __hook_patch_cmd_or_delay:Nnn and __hook_cmd_begindocument_code:.)

__hook_cmd_try_patch:nn At \begin{document} tries patching the command if the hook was not manually created
in the meantime. If the document does not exist, no error is raised here as it may hook
into a package that wasn’t loaded. Hooks added to commands in the document body
still raise an error if the command is not defined.

63 \cs_new_protected:Npn __hook_cmd_try_patch:nn #1 #2

o0 o
65 __hook_debug:n

66 { \iow_term:x { ->~\string\begin{document}~try~cmd / #1 / #2. } }
67 __hook_if_declared:nTF { cmd / #1 / #2 }

68 {

69 __hook_debug:n

70 { \iow_term:n { .->~Giving~up:~hook~already~created. } }
71 }

72 {

73 \cs_if_exist:cT {#1}

74 { \exp_args:Nc __hook_patch_command:Nnn {#1} {#1} {#2} }
75 }

76 }

(End of definition for __hook_cmd_try_patch:nn.)

4.5 Patching commands

__hook_patch_command:Nnn __hook_patch_command:Nnn will do some sanity checks on the argument to detect if it is
__hook_patch_check:NlNnn possible to add hooks to the command, and raises an error otherwise. If the command can
__hook_if_public_command:NTF contain hooks, then it uses \robust@command®@act to find out what type is the command,
__hook_if_public_command:w and patch it accordingly.
77 \cs_new_protected:Npn __hook_patch_command:Nnn #1 #2 #3
78 {
79 __hook_patch_debug:x { analyzing~’\token_to_str:N #1’ }
80 __hook_patch_debug:x { \token_to_str:N #1 = \token_to_meaning:N #1 }

81 __hook_patch_check:NNnn \cs_if_exist:NTF #1 { undef }

82 {

83 __hook_patch_debug:x { ++~control~sequence~is~defined }

84 __hook_patch_check:NNnn \token_if_macro:NTF #1 { macro }

85 {

86 __hook_patch_debug:x { ++~control~sequence~is~a~macro }
87 __hook_patch_check:NNnn __hook_if_public_command:NTF #1 { expl3 }
89 __hook_patch_debug:x { ++~macro~is~not~private }

% \robust@command@act

o1 \g_hook_patch_action_list_t1l #1

% __hook_retokenize_patch:Nnn { #1 {#2} {#3} }

93 }

04 ¥

95 T

96 }

And here’s the auxiliary used above:
o7 \cs_new_protected:Npn __hook_patch_check:NNnn #1 #2 #3 #4

98 {

9% #1 #2 {#4}

100 {

101 \msg_error:nnxx { hooks } { cant-patch }
102 { \token_to_str:N #2 } {#3}

103 3

104 }

and a conditional __hook_if_public_command:NTF to check if a command has __ in
its name (no other checking is performed). Primitives with :D in their name could be
included here, but they are already discarded in the \token_if_macro:NTF test above.

\g_hook_patch_action_list_tl

__hook patch DeclareRobustCommand: Nnn

105 \use:x

106 {

107 \prg_new_protected_conditional:Npnn

108 \exp_not:N __hook_if_public_command:N ##1 { TF }
109 {

110 \exp_not:N \exp_last_unbraced:Nf

111 \exp_not:N __hook_if_public_command:w

112 { \exp_not:N \cs_to_str:N ##1 }

113 \tl_to_str:n { _ _ } \s__hook_mark

114 }

115 }

116 \exp_last_unbraced:NNNNo
117 \cs_new_protected:Npn __hook_if_public_command:w

118 #1 \tl_to_str:n { _ _ } #2 \s__hook_mark
119 {

120 \tl_if_empty:nTF {#2}

121 { \prg_return_true: }

122 { \prg_return_false: }

123 }

(End of definition for __hook_patch_command:Nnn and others.)

4.5.1 Patching by expansion and redefinition

This is the list of known command types and the function that patches the command
hooks into them. The conditionals are taken from \ShowCommand, \NewCommandCopy and
__kernel_cmd_if_xparse:NTF defined in 1tcmd.

124 \tl_gset:Nn \g_hook_patch_action_list_tl

125 {

126 { \@if@DeclareRobustCommand __hook_patch_DeclareRobustCommand:Nnn }
127 { \@if@newcommand __hook_patch_newcommand:Nnn }

128 { __kernel_cmd_if_xparse:NTF __hook_cmd_patch_xparse:Nnn }

129 }

(End of definition for \g_hook_patch_action_list_tl.)

At this point we know that the commands can be patched by expanding then redefining.
These are the cases of commands defined with \newcommand with an optional argument
or with \DeclareRobustCommand.

With __hook_patch_DeclareRobustCommand:Nnn we check if the command has an
optional argument (with a test counter-intuitively called \@if@newcommand; also make
sure the command doesn’t take args by calling \robust@command@chk@safe). If so,
we pass the patching action to __hook_patch_newcommand:Nnn, otherwise we call the
patching engine __hook_patch_expand_redefine:NNnn with a \c_false_bool to in-
dicate that there is no optional argument.

130 \cs_new_protected:Npn __hook_patch_DeclareRobustCommand:Nnn #1

131 {

132 \exp_args:Nc __hook_patch_DeclareRobustCommand_aux:Nnn

133 { \cs_to_str:N #1 ~ }

134 }

135 \cs_new_protected:Npn __hook_patch_DeclareRobustCommand_aux:Nnn #1
136 {

137 \robust@command@chk@safe #1

10

__hook_patch_newcommand:Nnn

__hook_cmd_patch_xparse:Nnn

\

__hook patch expand redefine:NNnn
__hook redefine with hooks:Nnnn

__hook_make_prefixes:w

138 { \@if@newcommand #1 }

139 { \use_ii:nn }

140 { __hook_patch_newcommand:Nnn }

141 { __hook_patch_expand_redefine:NNnn \c_false_bool }
142 #1

143 ¥

(End of definition for __hook_patch_DeclareRobustCommand:Nnn.)

If the command was defined with \newcommand and an optional argument, call the patch-
ing engine with a \c_true_bool to flag the presence of an optional argument, and with
\\command to patch the actual code for \command.

14 \cs_new_protected:Npn __hook_patch_newcommand:Nnn #1

145 {

146 \exp_args:NNc __hook_patch_expand_redefine:NNnn \c_true_bool
147 { \c_backslash_str \cs_to_str:N #1 }

148 }

(End of definition for __hook_patch_newcommand:Nnn.)

And for commands defined by the xparse commands use this for patching:

1o \cs_new_protected:Npn __hook_cmd_patch_xparse:Nnn #1

150 {

151 \exp_args:NNc __hook_patch_expand_redefine:NNnn \c_false_bool
152 { \cs_to_str:N #1 ~ code }

153 }

(End of definition for __hook_cmd_patch_xparse:Nnn.)

Now the real action begins. Here we have in #1 a boolean indicating if the command
has a leading [...]-delimited argument, in #2 the command control sequence, in #3 the
name of the command (note that #1 # \csname#2\endcsname at this point!), and in #4
the hook position, either before or after.

Patching with expansion+redefinition is trickier than it looks like at first glance.
Suppose the simple definition:

\def\foo#1{#1##2}
When defined, its (replacement text) will be a token list containing:
out__param 1, mac__param #, character 2

Then, after expanding \foo{##1} (here ## denotes a single #5) we end up with a
token list with out param 1 replaced:

mac__param #, character 1, mac_param #, character 2
that is, the definition would be:
\def\foo#1{#1#2}

which obviously fails, because the original input in the definition was ## but TEX reduced
that to a single parameter token #g when carrying out the definition. That leaves no room
for a clever solution with (say) \unexpanded, because anything that would double the
second #g, would also (incorrectly) double the first, so there’s not much to do other than
a manual solution.

There are three cases we can distinguish to make things hopefully faster on simpler
cases:

11

1. a macro with no parameters;
2. a macro with no parameter tokens in its definition;
3. a macro with parameters and parameter tokens.

The first case is trivial: if the macro has no parameters, we can just use \unexpanded
around it, and if there is a parameter token in it, it is handled correctly (the macro can
be treated as a t1 variable).

The second case requires looking at the (replacement text) of the macro to see if
it has a parameter token in there. If it does not, then there is no worry, and the macro
can be redefined normally (without \unexpanded).

The third case, as usual, is the devious one. Here we’ll have to loop through the
definition token by token, and double every parameter token, so that this case can be
handled like the previous one.

15: (latexrelease) \IncludeInRelease{2023/06/01}{__hook_patch_expand_redefine:NNnn}
155 (latexrelease) {cmd~hooks~with~args}

156 \cs_new_protected:Npn __hook_patch_expand_redefine:NNnn #1 #2 #3 #4

157 {

158 __hook_patch_debug:x { ++~command~can~be~patched~without~rescanning }
We'll start by counting the number of arguments in the command by counting the number
of characters in the \cs_parameter_spec:N of the macro, divided by two, and subtracting
one if the command has an optional argument (that is, an extra [] in its (parameter
text)).

159 \int_set:Nn \1__hook_patch_num_args_int

160 {

161 \exp_args:Nf \str_count:n { __kernel_cs_parameter_spec:N #2 } / 2

162 \bool_if:NT #1 { -1 }

163 }

Now build two token lists:

\1__hook_param_text_t1l will contain the (parameter text) to be used when redefin-
ing the macro. It should be identical to the (parameter text) used when originally
defining that macro.

\1__hook_replace_text_tl will contain braced pairs of \c__hook_hashes_t1(num) to
feed to the macro when expanded. This token list as well as the previous will have
the first item surrounded by [...] in the case of an optional argument.

The use of \c__hook_hashes_tl here is to differentiate actual parameters in the
macro from parameter tokens in the original definition of the macro. Later on, \c__-
hook_hashes_t1 is either replaced by actual parameter tokens, or expanded into them.
164 \int_compare:nNnTF { \1__hook_patch_num_args_int } > { \c_zero_int }

165 {

We'll first check if the command has any parameter token in its definition (feeding it
empty arguments), and set __hook_exp_not:n accordingly. __hook_exp_not:n will
be used later to either leave \c__hook_hashes_tl or expand it, and also to remember
the result of __hook_if_has_hash:nTF to avoid testing twice (the test can be rather
slow).

166 \tl_set:Nx \1__hook_tmpa_tl { \bool if:NTF #1 { [1 } { {} } }

167 \int_step_inline:nnn { 2 } { \1__hook_patch_num_args_int }

12

168 { \tl_put_right:Nn \1__hook_tmpa_tl { { } } }

169 \exp_args:NNo \exp_args:No __hook_if_has_hash:nTF
170 { \exp_after:wN #2 \1__hook_tmpa_tl }

171 { \cs_set_eq:NN __hook_exp_not:n \exp_not:n }
172 { \cs_set_eq:NN __hook_exp_not:n \use:n }

173 \cs_set_protected:Npn __hook_tmp:w ##1 ##2

174 {

175 ##1 \1__hook_param_text_tl { \use:n ##2 }

176 ##1 \1__hook_replace_text_tl { __hook_exp_not:n {##2} }
177 }

Here we’ll conditionally add [...] around the first parameter:

178 \bool_if:NTF #1

179 { __hook_tmp:w \tl_set:Nx { [\c__hook_hashes_tl 11 } }
180 { __hook_tmp:w \tl_set:Nx { { \c__hook_hashes_tl 1 } } }
Then, for every parameter from the second, just add it normally:

181 \int_step_inline:nnn { 2 } { \1__hook_patch_num_args_int }
182 { __hook_tmp:w \tl_put_right:Nx { { \c__hook_hashes_tl ##1 } } }

Now, if the command has any parameter token in its definition (then __hook_exp_not:n
is \exp_not:n), call __hook_double_hashes:n to double them, and replace every \c__-
hook_hashes_tl by #:

183 \tl_set:Nx \1__hook_replace_text_tl

184 { \exp_not:N #2 \exp_not:V \1__hook_replace_text_tl }

185 \tl_set:Nx \1__hook_replace_text_tl

186 {

187 \token_if_eq_meaning:NNTF __hook_exp_not:n \exp_not:n
188 { \exp_args:NNV \exp_args:No __hook_double_hashes:n }
189 { \exp_args:NV \exp_not:o }

190 \1__hook_replace_text_tl

191 }

And now, set a few auxiliaries for the case that the macro has parameters, so it won'’t be
passed through \unexpanded (twice):
102 \cs_set_eq:NN __hook_def_cmd:w \tex_gdef:D

103 \cs_set_eq:NN __hook_exp_not:NN \prg_do_nothing:
194 ¥
195 {

In the case the macro has no parameters, we’ll treat it as a token list and things are much
simpler (expansion control looks a bit complicated, but it’s just a pair of \exp_not:N
preventing another \exp_not:n from expanding):

196 \tl_clear:N \1__hook_param_text_tl

197 \tl_set_eq:NN \1__hook_replace_text_tl #2

108 \cs_set_eq:NN __hook_def_cmd:w \tex_xdef:D

199 \cs_set:Npn __hook_exp_not:NN ##1 { \exp_not:N ##1 \exp_not:N }
200 }

Before redefining, we need to also get the prefixes used when defining the command.
Here we ensure that the \escapechar is printable, otherwise a macro defined with pre-
fixes \protected \long will have it \meaning printed as protectedlong, making life
unnecessarily complicated. Here the \escapechar is changed to /, then we loop between
pairs of /.../ extracting the prefixes.

201 \group_begin:

202 \int_set:Nn \tex_escapechar:D { ‘\/ }

13

\use:x

{

\group_end:
\tl_set:Nx \exp_not:N \1__hook_patch_prefixes_tl
{ \exp_not:N __hook_make_prefixes:w \cs_prefix_spec:N #2 / / }

}

Here we redefine the hook to have the right number of arguments. Disabling the hook,
undefining the parameter token list then calling __hook_make_usable:nn are enough
to redefine the hook to the extent we want. Code stored in the hook and other metadata
about it are not lost in the process.

__hook_disable:n { cmd / #3 / #4 }

\cs_undefine:c { c__hook_cmd / #3 / #4_parameter_tl }
__hook_make_usable:nn { cmd / #3 / #4 } { \1__hook_patch_num_args_int }

209

210

211

Now call __hook_redefine_with_hooks:Nnnn with the macro being redefined in #1,
then \UseHook{cmd/<name>/before} in #2 or \UseHook{cmd/<name>/after} in #3 (one
is always empty), and in #4 the (replacement text) of the macro.

212

\use:e

{

__hook_redefine_with_hooks:Nnnn \exp_not:N #2
\str_if_eq:nnTF {#4} { after }

{ \use_ii_i:nn }

{ \use:nn }

}

{{

T}
{{
A\

__hook_exp_not:NN \exp_not:N \UseHookWithArguments

{

__

} 3
__ho

cmd / #3 / #4 } { \int_use:N \1__hook_patch_num_args_int }
hook_braced_parameter:n { cmd / #3 / #4 }

ok_exp_not:NN \exp_not:V \1__hook_replace_text_tl }

Finally, update the hook code.
__hook_update_hook_code:n { cmd / #3 / #4 }

N
N}

229

230

231

234

235

236

37

238

239

240

241

243

(
(
(
(
(
(
(
(
(
(
(lat
(
(
(
(
(
(
(
(

}

latexrelease) \EndIncludeInRelease
latexrelease) \IncludeInRelease{2021/06/01}{__hook_patch_expand_redefine:NNnn}

latexrelease

{cmd~hooks~with~args}

latexrelease) \cs_gset_protected:Npn __hook_patch_expand_redefine:NNnn #1 #2 #3 #4

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

{

__hook_patch_debug:x { ++~command~can~be~patched~without~rescanning }

\int_

{

}

\int_

{

set:Nn \1__hook_patch_num_args_int

\exp_args:Nf \str_count:n { __kernel_cs_parameter_spec:N #2 } / 2
\bool if:NT #1 { -1 }

compare:nNnTF { \1__hook_patch_num_args_int } > { \c_zero_int }

\tl_set:Nx \1__hook_tmpa_tl { \bool if:NTF #1 { [1 }* { { } } }
\int_step_inline:nnn { 2 } { \1__hook_patch_num_args_int }
{ \tl_put_right:Nn \1__hook_tmpa_tl { { } } }
\exp_args:NNo \exp_args:No __hook_if_has_hash:nTF
{ \exp_after:wN #2 \1__hook_tmpa_tl }
{ \cs_set_eq:NN __hook_exp_not:n \exp_not:n }

14

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
270 {latexrelease

()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
271 (latexrelease) \tl_clear:N \1__hook_param_text_tl
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()

{ \cs_set_eq:NN __hook_exp_not:n \use:n }
\cs_set_protected:Npn __hook_tmp:w ##1 ##2
{

248
249
##1 \1__hook_param_text_tl { \use:n ##2 }
##1 \1__hook_replace_text_tl { __hook_exp_not:n {##2} }
}
\bool_if:NTF #1
{ __hook_tmp:w \tl_set:Nx { [\c__hook_hash_tl 1] } }
{ __hook_tmp:w \tl_set:Nx { { \c__hook_hash_tl1 1 } } }
\int_step_inline:nnn { 2 } { \1__hook_patch_num_args_int }
{ __hook_tmp:w \tl_put_right:Nx { { \c__hook_hash_tl1 ##1 } } }
\tl_set:Nx \1__hook_replace_text_tl
{ \exp_not:N #2 \exp_not:V \1__hook_replace_text_tl }
\tl_set:Nx \1__hook_replace_text_tl
{

250

251

260
261
\token_if_eq_meaning:NNTF __hook_exp_not:n \exp_not:n
{ \exp_args:NNV \exp_args:No __hook_double_hashes:n }
{ \exp_args:NV \exp_not:o }
\1__hook_replace_text_tl

262

263

264

265
}

\cs_set_eq:NN __hook_def_cmd:w \tex_gdef:D

\cs_set_eq:NN __hook_exp_not:NN \prg_do_nothing:

266

267

268

269

-~ N

272 (latexrelease \tl_set_eq:NN \1__hook_replace_text_tl #2

latexrelease \cs_set_eq:NN __hook_def_cmd:w \tex_xdef:D

latexrelease \cs_set:Npn __hook_exp_not:NN ##1 { \exp_not:N ##1 \exp_not:N }
latexrelease }

latexrelease \group_begin:

latexrelease \int_set:Nn \tex_escapechar:D { ‘\/ }

273

274

N

5

276

N
N

7

276 {latexrelease \use:x
270 {latexrelease {
250 (latexrelease \group_end:

latexrelease
latexrelease

\tl_set:Nx \exp_not:N \1__hook_patch_prefixes_tl
{ \exp_not:N __hook_make_prefixes:w \cs_prefix_spec:N #2 / / }

281

N

282

285 (latexrelease F
251 (latexrelease \use:x
2s5 {latexrelease {

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease) }
latexrelease) \EndIncludeInRelease

286 __hook_redefine_with_hooks:Nnnn \exp_not:N #2
\str_if_eq:nnTF {#4} { after }
{ \use_ii_i:nn }
{ \use:nn }
{ { __hook_exp_not:NN \exp_not:N \UseHook { cmd / #3 / #4 } } }
{{}17

{ __hook_exp_not:NN \exp_not:V \1__hook_replace_text_tl }

N

87
288
289
290
291
292
203 F

204
295

Now that all the needed tools are ready, without further ado we’ll redefine the
command. The definition uses the prefixes gathered in \1__hook_patch_prefixes_tl,
a primitive __hook_def_cmd:w (which is \tex_gdef :D or \tex_xdef :D) to avoid adding
extra prefixes, and the (parameter text) from \1__hook_param_text_t1.

15

__hook_if_has_hash_p:n
__hook_if_has_hash:nTF
__hook_if_has_hash:w
__hook_if_has_hash_check:w

__hook_double_hashes:n
__hook_double_hashes:w
__hook double hashes output:N
__hook_double_hashes_stop:w
__hook double hashes group:n

__hook double hashes space:w

Then finally, in the body of the definition, we insert #2, which is cmd/#1/before or
empty, #4 which is the (replacement text), and #3 which is cmd/#1/after or empty.

206 \cs_new_protected:Npn __hook_redefine_with_hooks:Nnnn #1 #2 #3 #4
207 {

208 \1__hook_patch_prefixes_tl
209 \exp_after:wN __hook_def_cmd:w
300 \exp_after:wN #1 \1__hook_param_text_tl

301 {#2 #4 #3 %}
302 }

Here’s the auxiliary that makes the prefix control sequences for the redefinition.
Each item has to be \tl_trim_spaces:n’d because the last item (and not any other)
has a trailing space.

503 \cs_new:Npn __hook_make_prefixes:w / #1 /

304 {

305 \tl_if_empty:nF {#1}

306 {

307 \exp_not:c { tex_ \tl_trim_spaces:n {#1} :D }
308 __hook_make_prefixes:w /

309 }

310 }

(End of definition for __hook_patch_expand_redefine:NNnn, __hook_redefine_with_hooks:Nnnn, and
__hook_make_prefixes:w.)

Here are some auxiliaries for the contraption above.

__hook_if_has_hash:nTF searches the token list #1 for a catcode 6 token, and if any is
found, it returns true, and false otherwise. The searching doesn’t care about preserving
groups or spaces: we can ignore those safely (braces are removed) so that searching is as
fast as possible.

s \prg_new_conditional:Npnn __hook_if_has_hash:n #1 { TF }

32 { __hook_if_has_hash:w #1 ## \s__hook_mark }

313 \cs_new:Npn __hook_if_has_hash:w #1

314 {

315 \tl_if_single_token:nTF {#1}

316 {

317 \token_if_eq_catcode:NNTF ## #1
318 { __hook_if_has_hash_check:w }
319 { __hook_if_has_hash:w }

320 ¥

321 { __hook_if_has_hash:w #1 }

322 }

323 \cs_new:Npn __hook_if_has_hash_check:w #1 \s__hook_mark
s { \tl_if_empty:nTF {#1} { \prg_return_false: } { \prg_return_true: } }

(End of definition for __hook_if_has_hash:nTF, __hook_if_has_hash:w, and __hook_if_has_hash_-
check:w.)

__hook_double_hashes:n loops through the token list #1 and duplicates any catcode 6
token, and expands tokens \ifx-equal to \c__hook_hashes_t1, and leaves all other to-
kens \notexpanded with \exp_not:N. Unfortunately pairs of explicit catcode 1 and
catcode 2 character tokens are normalised to {; and }; because it’s not feasible to ex-
pandably detect the character code (maybe it could be done using something along the

16

lines of https://tex.stackexchange.com/a/527538, but it’s far too much work for close
to zero benefit).

__hook_double_hashes:w is the tail-recursive loop macro, that tests which of the
three types of item is in the head of the token list.
55 \cs_new:Npn __hook_double_hashes:n #1
326 { __hook_double_hashes:w #1 \q__hook_recursion_tail \q__hook_recursion_stop }
37 \cs_new:Npn __hook_double_hashes:w #1 \q__hook_recursion_stop

328 {

320 \tl_if_head_is_N_type:nTF {#1}
330 { __hook_double_hashes_output:N }
331 {

332 \tl_if_head_is_group:nTF {#1}
333 { __hook_double_hashes_group:n }
334 { __hook_double_hashes_space:w }
335 }
336 #1 \q__hook_recursion_stop
337 }
__hook_double_hashes_output:N checks for the end of the token list, then checks
if the token is \c__hook_hashes_t1, and if so just leaves it.

53 \cs_new:Npn __hook_double_hashes_output:N #1

339 {

340 \if _meaning:w \g__hook_recursion_tail #1

341 __hook_double_hashes_stop:w

342 \fi:

343 \if:w ?

344 \if_meaning:w \c__hook_hash_tl #1 ! \fi:
345 \if_meaning:w \c__hook_hashes_tl #1 ! \fi:
346 ?

347 \else:

(this \use_i:nnnn uses \fi: and consumes \use:n, the whole \if_catcode:w block,
and the \exp_not:N, leaving just #1 which is \c__hook_hashes_t1.)

348 \use_i:nnnn
349 \fi:

350 \use:n

351 {

If #1 is not \c__hook_hashes_t1, then check if its catcode is 6, and if so, leave it doubled
in \exp_not:n and consume the following \exp_not:N #1.

352 \if_catcode:w ## \exp_not:N #1
353 \exp_after:wN \use_ii:nnnn
354 \fi:

355 \use_none:n

356 { \exp_not:n { #1 #1 } }

357 }

If both previous tests returned false, then leave the token unexpanded and resume the
loop.

358 \exp_not:N #1

350 __hook_double_hashes:w

360 }
561 \cs_new:Npn __hook_double_hashes_stop:w #1 \g__hook_recursion_stop { \fi: }

17

https://tex.stackexchange.com/a/527538

__hook_retokenize_patch:Nnn

Dealing with spaces and grouped tokens is trivial:

32 \cs_new:Npn __hook_double_hashes_group:n #1

33 { { __hook_double_hashes:n {#1} } __hook_double_hashes:w }
364 \exp_last_unbraced:NNo

365 \cs_new:Npn __hook_double_hashes_space:w \c_space_tl

36 { ~ __hook_double_hashes:w }

(End of definition for __hook_double_hashes:n and others.)

4.5.2 Patching by retokenization

At this point we’ve drained the possibilities of patching a command by expansion-and-
redefinition, so we have to resort to patching by retokenizing the command. Patching
by retokenization is done by getting the \meaning of the command, doing the neces-
sary manipulations on the generated string, and the retokenizing that again by using
\scantokens.

Patching by retokenization is definitely a riskier business, because it relies that the
tokens printed by \meaning produce the exact same tokens as the ones in the original
definition. That is, the catcode régime must be exactly(ish) the same, and there is no
way of telling except by trial and error.

This is the macro that will control the whole process. First we’ll try out one final, rather
trivial case, of a command with no arguments; that is, a token list. This case can be
patched with the expand-and-redefine routine but it has to be the very last case tested for,
because most (all?) robust commands start with a top-level macro with no arguments,
so testing this first would short-circuit \robust@command®@act and the top-level macros
would be incorrectly patched. In that case, we just check if the \cs_parameter_spec:N
is empty, and call __hook_patch_expand_redefine:NNnn.

567 \cs_new_protected:Npn __hook_retokenize_patch:Nnn #1 #2 #3
368 {

369 \str_if_eq:eeTF { __kernel_cs_parameter_spec:N #1 } { }
370 { __hook_patch_expand_redefine:NNnn \c_false_bool #1 {#2} {#3} }
371 {

2 __hook_patch_debug:x { ..~command~can~only~be~patched~by~rescanning }

Otherwise, we start the actual patching by retokenization job. The code calls
__hook_try_patch_with_catcodes:Nnnnw with a different catcode setting:

e The current catcode setting;
e Switching the catcode of @;

e Switching the expl3 syntax on or off;

Both of the above.

If patching succeeds, __hook_try_patch_with_catcodes:Nnnnw has the side-effect
of patching the macro #1 (which may be an internal from the command whose name is #2).

373 \tl_set:Nx \1__hook_tmpa_tl

374 {

375 \int_compare:nNnTF { \char_value_catcode:n {‘\@ } } = { 12 }
376 { \exp_not:N \makeatletter } { \exp_not:N \makeatother }
377 }

378 \tl_set:Nx \1__hook_tmpb_tl

18

__hook_try_patch with_catcodes:Nnnnw

379 {
380 \bool_if:NTF \1__kernel_expl_bool

381 { \ExplSyntax0ff } { \ExplSyntaxOn }
382 }

383 \use X

384 {

385 \exp_not:N __hook_try_patch_with_catcodes:Nnnnw
386 \exp_not:n { #1 {#2} {#3} }

387 { \prg_do_nothing: }

388 { \exp_not:V \1__hook_tmpa_tl } % @
380 { \exp_not:V \1__hook_tmpb_tl } % _:
390 {

301 \exp_not:V \1__hook_tmpa_tl 7% @
302 \exp_not:V \1__hook_tmpb_tl % _
393 }

304 ¥

395 \gq_recursion_tail \g_recursion_stop

If no catcode setting succeeds, give up and raise an error. The command isn’t
changed in any way in that case.
396 {
307 \msg_error:nnxx { hooks } { cant-patch }
308 { \c_backslash_str #2 } { retok }
399 }
400 }
401 T

(End of definition for __hook_retokenize_patch:Nnn.)

This function is a simple wrapper around __hook_cmd_if_scanable:NnTF and __hook_-
patch_retokenize:Nnnn if the former returns (true), plus some debug messages.

> (latexrelease) \IncludeInRelease{2023/06/01}{__hook_try_patch_with_catcodes:Nnnnw}
w03 (latexrelease) {cmd~hooks~with~args}

w04 \cs_new_protected:Npn __hook_try_patch_with_catcodes:Nnnnw #1 #2 #3 #4
405 {

4

406 \quark_if_recursion_tail_stop_do:nn {#4} { \use:n }

407 __hook_patch_debug:x { ++~trying~to~patch~by~retokenization }

408 __hook_cmd_if_scanable:NnTF {#1} {#4}

409 {

410 __hook_patch_debug:x { ++-macro~can-~be~retokenized~cleanly }

a1 __hook_patch_debug:x { ==~retokenizing~macro~now }

a12 __hook_patch_retokenize:Nnnn #1 { cmd / #2 / #3 } {#3} {#4}

413 \use_i_delimit_by_q_recursion_stop:nw \use_none:n

414 }

415 {

416 __hook_patch_debug:x { --~macro~cannot~be~retokenized~cleanly }

417 __hook_try_patch_with_catcodes:Nnnnw #1 {#2} {#3}

418 }

419 }

20 (latexrelease) \EndIncludeInRelease

221 (latexrelease) \IncludeInRelease{2021/06/01}{__hook_try_patch_with_catcodes:Nnnnw}
222 (latexrelease) {cmd~hooks~with~args}

23 (latexrelease) \cs_gset_protected:Npn __hook_try_patch_with_catcodes:Nnnnw #1 #2 #3 #4
224 (latexrelease) {

225 (latexrelease) \quark_if_recursion_tail_stop_do:nn {#4} { \use:n }

19

latexrelease
latexrelease

426

__hook_patch_debug:x { ++~trying~to~patch~by~retokenization }
__hook_cmd_if_scanable:NnTF {#1} {#4}

427

126 (latexrelease {

120 {latexrelease __hook_patch_debug:x { ++~macro~can~be~retokenized~cleanly }

150 (latexrelease __hook_patch_debug:x { ==~retokenizing~macro~now }

431 {latexrelease __hook_patch_retokenize:Nnnn #1 {#2} {#3} {#4}
\use_i_delimit_by_q_recursion_stop:nw \use_none:n

433

454 (latexrelease {

latexrelease
latexrelease
latexrelease
latexrelease) }
120 (latexrelease) \EndIncludeInRelease

435 __hook_patch_debug:x { --~macro~cannot~be~retokenized~cleanly }

__hook_try_patch_with_catcodes:Nnnnw #1 {#2} {#3}

436

}

437

()
()
()
()
()
()
132 (latexrelease)

(latexrelease) F
()
()
{)
()
()
)

438

(End of definition for __hook_try_patch_with_catcodes:Nnnnw.)

\kerneltmpDollotUse This is an oddity required to be safe (as safe as reasonably possible) when patching the
command. The entirety of

(prefixes) \def (cs) (parameter text) {(replacement text)}

will go through \scantokens. The (parameter text) and (replacement text) are
what we are trying to retokenize, so not much worry there. The other items, however,
should “just work”, so some care is needed to not use too fancy catcode settings. There-
fore we can’t use an expl3-named macro for (cs), nor the expl3 versions of \def or the
(prefixes). That is why the definitions that will eventually go into \scantokens will
use the oddly (but hopefully clearly)-named \kerneltmpDoNotUse:

20 \cs_new_eq:NN \kerneltmpDoNotUse !

PhO: Maybe this can be avoided by running the (parameter text) and the (replacement
text) separately through \scantokens and then putting everything together at the end.

(End of definition for \kerneltmpDoNotUse.)

__hook patch required catcodes: Here are the catcode settings that are mandatory when retokenizing commands. These
are the minimum necessary settings to perform the definitions: they identify control
sequences, which must be escaped with \g, delimit the definition with {; and }2, and
mark parameters with #¢. Everything else may be changed, but not these.

21 \cs_new_protected:Npn __hook_patch_required_catcodes:

442 {

443 \char_set_catcode_escape:N \\

444 \char_set_catcode_group_begin:N \{

415 \char_set_catcode_group_end:N \}

446 \char_set_catcode_parameter:N \#

447 % \int_set:Nn \tex_endlinechar:D { -1 }
448 % \int_set:Nn \tex_newlinechar:D { -1 }
449 }

PhO: etoolbox sets the \endlinechar and \newlinechar when patching, but as far as
I tested these didn’t make much of a difference, so I left them out for now. Maybe
\newlinechar=-1 avoids a space token being added after the definition.

PhO: If the patching is split by (parameter text) and (replacement text), then only #
will have to stay in that list.

20

PhO: Actually now that we patch \UseHook{cmd/foo/before}, all the tokens there need to
have the right catcodes, so this list now includes all lowercase letters, U and H, the slash,
and whatever characters in the command name. .. sigh. . .

(End of definition for __hook_patch_required_catcodes:.)

__hook_cmd_if_scanable:NnTF Here we’ll do a quick test if the command being patched can in fact be retokenized with
the specific catcode setting without changing in meaning. The test is straightforward:

__hook_guess_arg_count :NN
__hook_guess_arg_count:wN

__hook_guess_arg_count:nw

1.
2.

3.
4.

apply \meaning to the command;

split the (prefixes), (parameter text) and (replacement text) and arrange
them as

(prefixes)\def\kerneltmpDoNotUse(parameter text){(replacement text)}
rescan that with the given catcode settings, and do the definition; then finally

compare \kerneltmpDoNotUse with the original command.

If both are \ifx-equal, the command can be safely patched.

450

459

460

461

462

463

464

465

466

\prg_new_protected_conditional:Npnn __hook_cmd_if_scanable:Nn #1 #2 { TF }

\cs_set_eq:NN \kerneltmpDoNotUse \scan_stop:
\cs_set_eq:NN __hook_tmp:w \scan_stop:
\use:x
{
\cs_set:Npn __hook_tmp:w
####1 \tl_to_str:n { macro: } ####2 -> ####3 \s__hook_mark
{ ####1 \def \kerneltmpDoNotUse ####2 {####3} }
\tl_set:Nx \exp_not:N \1__hook_tmpa_tl
{ \exp_not:N __hook_tmp:w \token_to_meaning:N #1 \s__hook_mark }
}
\tl_rescan:nV { #2 __hook_patch_required_catcodes: } \1__hook_tmpa_tl
\token_if_eq_meaning:NNTF #1 \kerneltmpDoNotUse
{ \prg_return_true: }
{ \prg_return_false: }
¥

(End of definition for __hook_cmd_if_scanable:NnTF.)

Looks at the parameter text of a macro, and counts the parameters by looking at the
number after a #, and checking if they are sequential. This macro assumes that all
parameters are marked with hashes, and not other characters, and that there is no “trick

parameter”.
w7 (latexrelease) \IncludeInRelease{2023/06/01}{__hook_guess_arg_count: NN}
s (latexrelease) {cmd~hooks~with~args}

\cs_new_protected:Npn __hook_guess_arg_count:NN #1

{
\exp_after:wN __hook_guess_arg_count:wN
\token_to_meaning:N #1 \s__hook_mark
}

\exp_last_unbraced:NNNNo
\cs_new_protected:Npx __hook_guess_arg_count:wN

#1 { \tl_to_str:n { macro: } } #2 \s__hook_mark #3
{

21

\A

_ h

0

s

0C

).

k patch_retokenize:Nnnn

478 \int_set:Nn #3

479 {

480 \exp_not:N __hook_guess_arg_count:nw { 0 } #2
481 \c_hash_str 0 \s__hook_mark

483 }

130 \use:e

25 { \cs_new:Npn \exp_not:N __hook_guess_arg_count:nw #1 #2 \c_hash_str #3 }
486 {

487 \int_compare:nNnTF { #1 + 1 } = {#3}

488 { __hook_guess_arg_count:nw {#3} }

489 { #1 __hook_use_none_delimit_by_s_mark:w }

490 }

w01 (latexrelease) \EndIncludeInRelease

102 (latexrelease) \IncludeInRelease{2021/06/01}{__hook_guess_arg_count:NN}
203 (latexrelease) {cmd~hooks~with~args}

01 (latexrelease) \cs_undefine:N __hook_guess_arg_count:NN

105 (latexrelease) \EndIncludeInRelease

(End of definition for __hook_guess_arg_count:NN, __hook_guess_arg_count:wN, and __hook_-
guess_arg_count :nw.)

Then, if __hook_cmd_if_scanable:NnTF returned true, we can go on and patch the
command.

w6 (latexrelease) \IncludeInRelease{2023/06/01}{__hook_patch_retokenize:Nnnn}

107 (latexrelease) {cmd~hooks~with~args}
s \cs_new_protected:Npn __hook_patch_retokenize:Nnnn #1 #2 #3 #4
wo {

Here, when patching by retokenization, we can only guess the number of arguments of
the macro.

500 __hook_guess_arg_count:NN #1 \1__hook_patch_num_args_int
Then we redefine the hook to have the right number of arguments. Disabling the
hook, undefining the parameter token list then calling __hook_make_usable:nn are

enough to redefine the hook to the extent we want. Code stored in the hook and other
metadata about it are not lost in the process.

501 __hook_disable:n {#2}

502 \cs_undefine:c { c__hook_#2_parameter_tl }

503 __hook_make_usable:nn {#2} { \1__hook_patch_num_args_int }
504 \tl_set:Ne \1__hook_tmpa_tl

505 { \exp_args:Ne \tl_to_str:n { __hook_braced_parameter:n {#2} } }
506 \use:x

507 {

508 \str_replace_all:Nnn \exp_not:N \1__hook_tmpa_tl

509 { #### } { \c_hash_str }

510 }

Then, make make some things \relax to avoid lots of \noexpand below.
511 \cs_set_eq:NN \kerneltmpDoNotUse \scan_stop:

512 \cs_set_eq:NN __hook_tmp:w \scan_stop:

513 \use:x

514 {

Now we’ll define __hook_tmp:w such that it splits the \meaning of the macro (#1) into
its three parts:

22

####1. (prefixes)
####2. (parameter text)
####3. (replacement text)

and arrange that a complete definition, then place the before or after hooks around
the (replacement text): accordingly.

515 \cs_set:Npn __hook_tmp:w

516 ####1 \tl_to_str:n { macro: } ####2 -> ####3 \s__hook_mark
517 {

518 ####1 \def \kerneltmpDoNotUse ####2

519 {

520 \str_if_eq:nnT {#3} { before }

521 {

522 \token_to_str:N \UseHookWithArguments {#23}
523 { \int_use:N \1__hook_patch_num_args_int }
524 \1__hook_tmpa_tl

525 }

526 ####3

527 \str_if_eq:nnT {#3} { after }

528 {

520 \token_to_str:N \UseHookWithArguments {#2}
530 { \int_use:N \1__hook_patch_num_args_int }
531 \1__hook_tmpa_tl

532 }

533 T

534 }

Now we just have to get the \meaning of the command being patched and pass it through
the meat grinder above.

535 \tl_set:Nx \exp_not:N \1__hook_tmpa_tl
536 { \exp_not:N __hook_tmp:w \token_to_meaning:N #1 \s__hook_mark }
537 }

Now rescan with the given catcode settings (overridden by the __hook_patch_-
required_catcodes:), and implicitly (by using the rescanned token list) carry out the
definition from above.

538 \tl_rescan:nV { #4 __hook_patch_required_catcodes: } \1__hook_tmpa_tl
And to close, copy the newly-defined command into the old name and the patching is
finally completed:

539 \cs_gset_eq:NN #1 \kerneltmpDoNotUse

Finally, update the hook code.

540 __hook_update_hook_code:n {#2}
541 }
sz (latexrelease) \EndIncludeInRelease
513 (latexrelease) \IncludeInRelease{2021/06/01}{__hook_patch_retokenize:Nnnn}
4 (latexrelease) {cmd~hooks~with~args}
s (latexrelease) \cs_gset_protected:Npn __hook_patch_retokenize:Nnnn #1 #2 #3 #4
)
)
)
)

o

latexrelease) {

o

517 (latexrelease
o {
(

4 \cs_set_eq:NN \kerneltmpDoNotUse \scan_stop:
\cs_set_eq:NN __hook_tmp:w \scan_stop:

\use:x

latexrelease
latexrelease

54,

549

23

ss0 (latexrelease) {

ss1 (latexrelease) \cs_set:Npn __hook_tmp:w

52 (latexrelease) ####1 \tl_to_str:n { macro: } ####2 -> ####3 \s__hook_mark

555 (latexrelease) {

ss4 (latexrelease) ####1 \def \kerneltmpDoNotUse ####2

555 (latexrelease) {

556 (latexrelease) \str_if_eq:nnT {#3} { before }

ss7 (latexrelease) { \token_to_str:N \UseHook { cmd / #2 / #3 } }

s (latexrelease) HHHH#3

550 (latexrelease) \str_if_eq:nnT {#3} { after }

so0 (latexrelease) { \token_to_str:N \UseHook { cmd / #2 / #3 } }

s61 (latexrelease) }

s62 (latexrelease) }

563 (latexrelease) \tl_set:Nx \exp_not:N \1__hook_tmpa_tl

s6¢ (latexrelease) { \exp_not:N __hook_tmp:w \token_to_meaning:N #1 \s__hook_mark }
565 (latexrelease) }

se (latexrelease) \tl_rescan:nV { #4 __hook_patch_required_catcodes: } \1__hook_tmpa_t1l
s67 (latexrelease) \cs_gset_eq:NN #1 \kerneltmpDoNotUse

ses (latexrelease) }

s (latexrelease) \EndIncludeInRelease

(End of definition for __hook_patch_retokenize:Nnnn.)

4.6 Messages

s70 (latexrelease) \IncludeInRelease{2023/06/01}{wrong-cmd-hook}}
(latexrelease) {Standardise~generic~hook~names}
(latexrelease) \EndIncludeInRelease
(latexrelease) \IncludeInRelease{2021/06/01}Hwrong-cmd-hook}
(latexrelease) {Standardise~generic~hook~names}
(latexrelease) \msg_new:nnnn { hooks } { wrong-cmd-hook }
(latexrelease) {
(latexrelease) Generic~hook~‘cmd/#1/#2’~is~invalid.
57 (latexrelease)’ The~hook~should~be~ ‘cmd/#1/before’~or~‘cmd/#1/after’.
()
()
()
()
()

{

\

576

N

N

7

s70 (latexrelease) }
latexrelease) {
latexrelease
latexrelease
latexrelease) }
latexrelease) \EndIncludeInRelease

msg_new:nnnn { hooks } { cant-patch }

580
581

You~tried~to~add~a~generic~hook~to~command~\iow_char:N \\#1,~but~‘#2’~
is~an~invalid~component.~Only~‘before’~or~‘after’~are~allowed.

582

585

586 {

587 Generic~hooks~cannot~be~added~to~’#1’.

588 }

589 {

590 You~tried~to~add~a~hook~to~’#1’,~but~LaTeX~was~unable~to~
501 patch~the~command~because~it~__hook_unpatchable_cases:n {#2}.
592 }

503 \cs_new:Npn __hook_unpatchable_cases:n #1

504 {

505 \str_case:nn {#1}

596 {

597 { undef } { doesn’t~exist }

508 { macro } { is~not~a~macro }

24

599 { expl3 } { is~a~private~expl3~macro }
600 { retok } { can’t~be~retokenized~cleanly }

601 }
602 }

6

S

s01 (latexrelease)
o5 (latexrelease)

s (latexrelease) \IncludeInRelease{0000/00/00}{1tcmdhooks})
{The~hook~management~system~for~commands}

The command __hook_cmd_begindocument_code: is used in an internal hook, so we
need to make sure it has a harmless definition after rollback as that will not remove it

from the kernel hook.

oos (latexrelease) \cs_set_eq:NN __hook_cmd_begindocument_code: \prg_do_nothing:

s07 (latexrelease)

s (latexrelease) \EndModuleRelease
600 \ExplSyntaxOff

o (/2ekernel | latexrelease)

611 <©@=>

[

S

6.

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
N 446
N/ 202, 277
AN\ 443, 581
N 444
\} 445
A
\AddToHooko.... 3
B
\begin 66

bool commands:
\bool_if:NTF
. 162, 166, 178, 237, 241, 253, 380
\c_false_bool 141, 151, 370, 10

\c_true_bool 146, 11
C
char commands:
\char_set_catcode_escape:N 443
\char_set_catcode_group_begin:N 444
\char_set_catcode_group_end:N .. 445
\char_set_catcode_parameter:N .. 446
\char_value_catcode:n 375
cs commands:
\cs_generate_variant:Nn 20
\cs_gset_eq:NN 56, 539, 567

25

\cs_gset_protected:Npn . 231, 423, 545

\cs_if_exist:NTF 73, 81

\cs_new:Npn 303, 313, 323
325, 327, 338, 361, 362, 365, 485, 593

\cs_new_eq:NN 440, 13, 14

\cs_new_protected:Npn
34, 36, 46, 54, 63,
77,97, 117, 130, 135, 144, 149, 156
296, 367, 404, 441, 469, 498, 18, 23, 25

\cs_new_protected:Npx 475
\cs_parameter_spec:N 18
\cs_prefix_spec:N 207, 282
\cs_set:Npn ... 199, 274, 456, 515, 551

\cs_set_eq:NN 171, 172
192, 193, 198, 246, 247, 267, 268,
273, 452, 453, 511, 512, 547, 548, 606

\cs_set_protected:Npn 173, 248

\cs_to_str:N 112, 133, 147, 152

\cs_undefine:N 59, 210, 494, 502

D
\def 458, 518, 554
\DisableGenericHook 4
E
else commands:
\else: 347

\EndIncludeInRelease 45, 228, 295, 420,
439, 491, 495, 542, 569, 572, 584, 31
\EndModuleRelease 608

exp commands:
\exp_after:wN

170, 245, 299, 300, 353, 471

\exp_args:Nc 42,74, 132, 29
\exp_args:Ne 505
\exp_args:Nf 161, 236
\exp_args:NNc 146, 151
\exp_args:NNo 169, 244
\exp_args:NNV 188, 263
\exp_args:No 169, 188, 244, 263
\exp_args:NV 189, 264
\exp_last_unbraced:Nf 110
\exp_last_unbraced:NNNNo ... 116, 474
\exp_last_unbraced:NNo 364
\exp_not:N 108, 110

111, 112, 184, 199, 206, 207, 214,
219, 259, 274, 281, 282, 286, 290,
307, 352, 358, 376, 385, 459, 460,
480, 485, 508, 535, 536, 563, 564, 17
\exp_not:n 171, 184,
187, 189, 224, 246, 259, 262, 264,
292, 356, 386, 388, 389, 391, 392, 13

\ExplSyntaxOff 381, 609
\ExplSyntaxOn 381, 3
F

fi commands:

\fi: ... 342, 344, 345, 349, 354, 361, 17
\foO . .. 11
G

group commands:
\group_begin: 201, 276
\group_end: 205, 280
H
hook commands:
\g_hook_patch_action_list_tl
.................... 91, 124, 6
hook internal commands:
__hook_braced_parameter:n . 221, 505

__hook_cmd_begindocument_code:
46, 54, 59, 62, 606, 25
__hook_cmd_if_scanable:Nn 450
__hook_cmd_if_scanable:NnTF
408, 427, 450, 19
__hook_cmd_patch_xparse:Nnn

.................. 128, 149, 149
__hook_cmd_try_patch:nn .. 52, 63, 63
__hook_debug:n 39, 48, 49, 65, 69, 19, 28
__hook_def_cmd:w

. 192, 198, 267, 273, 299, 13, 14, 15

26

\g__hook_delayed_patches_prop . ..
.................. 51, 57, 58, 17
__hook_disable:n 209, 501
__hook_double_hashes:n
188, 263, 325, 325, 363, 13
__hook_double_hashes:w
..... 325, 326, 327, 359, 363, 366, 17
__hook_double_hashes_group:n . ..
.................. 325, 333, 362
__hook_double_hashes_output:N ..
325, 330, 338, 17
__hook_double_hashes_space:w . ..

.................. 325, 334, 365
__hook_double_hashes_stop:w .

.................. 325, 341, 361
__hook_exp_not:n 171,

172, 176, 187, 246, 247, 251, 262, 13
__hook_exp_not:NN 193, 199

219, 224, 268, 274, 290, 292, 13, 13
__hook_guess_arg_count:NN
467, 467, 469, 492, 494, 500
__hook_guess_arg_count:nw
467, 480, 485, 488
__hook_guess_arg_count:wN

.................. 467, 471, 475
\c__hook_hash_t1 254, 255, 257, 344, 11
\c__hook_hashes_t1
179, 180, 182, 345, 11, 12
__hook_if_declared:nTF 67
__hook_if_has_hash:n
__hook_if_has_hash:nTF
169, 244, 311, 16

__hook_if_has_hash:w
........... 311, 312, 313, 319, 321
__hook_if_has_hash_check:w .
.................. 311, 318, 323
__hook_if_has_hash_p:n 311
__hook_if_public_command:N ... 108
__hook_if_public_command:NTF . ..
..................... 77,87, 9
__hook_if_public_command:w ..
................... 77, 111, 117
__hook_make_prefixes:w
........... 154, 207, 282, 303, 308
__hook_make_usable:nn .. 211, 503, 22
\1__hook_param_text_tl
175, 196, 250, 271, 300, 8, 12
__hook_patch_check:NNnn
............... 77, 81, 84, 87, 97
__hook_patch_cmd_or_delay:Nnn ..
42, 46, 46, 56, 29, 8
__hook_patch_command:Nnn
................ 56, 74, 77, 77, 9

__hook_patch_debug:n 79, 80
83, 86, 89, 158, 233, 372, 407, 410,
411, 416, 426, 429, 430, 435, 18, 18

__hook_patch_DeclareRobustCommand :Nnn

126, 130, 130, 10
__hook_patch_DeclareRobustCommand_-

aux:Nnn 132, 135
__hook_patch_expand_redefine:NNnn
.................. 141, 146,

151, 154, 154, 156, 229, 231, 370, 10
__hook_patch_newcommand:Nnn
127, 140, 144, 144, 10
\1__hook_patch_num_args_int
159, 164, 167, 181, 211, 220
234, 239, 242, 256, 7, 500, 503, 523, 530
\1__hook_patch_prefixes_tl
206, 281, 298, 8, 15
__hook_patch_required_catcodes:
441, 441, 462, 538, 566
__hook_patch_retokenize:Nnnn . ..
412, 431, 496, 496, 498, 543, 545,
__hook_redefine_with_hooks:Nnnn
154, 214, 286, 296, 14
\1__hook_replace_text_tl ... 176,
183, 184, 185, 190, 197, 224, 251,
258, 259, 260, 265, 272, 292, 8, 12
__hook_retokenize_patch:Nnn
92, 367, 367
__hook_tmp:w 173, 179, 180
182, 248, 254, 255, 257, 453, 456,
460, 512, 515, 536, 548, 551, 564, 22
\1__hook_tmpa_t1l 166, 168, 170, 241,
243, 245, 373, 388, 391, 459, 462,
504, 508, 524, 531, 535, 538, 563, 566
\1__hook_tmpb_t1l 378, 389, 392
__hook_try_patch_with_catcodes:Nnnnw
385,
402, 402, 404, 417, 421, 423, 436, 18
__hook_try_put_cmd_hook:n
32, 34, 21, 21, 23
__hook_try_put_cmd_hook:w
35, 36, 21, 24, 25

23

19

__hook_unpatchable_cases:n 591, 593
__hook_update_hook_code:n . 226, 540
__hook_use_none_delimit_by_s_-
mark:W 489
I
if commands:
Nif:w .o 343
\if _catcode:w 352, 17
\if_meaning:w 340, 344, 345
T 16

\IncludeInRelease 32, 154, 229, 402, 421,
467, 492, 496, 543, 570, 573, 603, 21
int commands:
\int_compare:nNnTF . 164, 239, 375, 487
\int_new:N
\int_set:Nn
. 159, 202, 234, 277, 447, 448, 478
\int_step_inline:nnn 167, 181, 242, 256

\int_use:N 220, 523, 530

\c_zero_int 164, 239
iow commands:

\iow_char:N 581

\iow_term:n .. 39, 48, 50, 66, 70, 19, 28

K
kernel internal commands:

__kernel_cmd_if_xparse:NTF . 128, 10

__kernel_cs_parameter_spec:N ...
.................. 161, 236, 369

\1__kernel_expl_bool 380

\kerneltmpDoNotUse 440, 452, 458
463, 511, 518, 539, 547, 554, 567, 21

M
\makeatletter 376
\makeatother 376
msg commands:
\msg_error:nnnn 43, 101, 397
\msg_new:nnnn 575, 585
N
\NewDocumentCommand)
\NewHoOKo,)
\NewHookPair 3
\NewHookWithArguments 5
\NewModuleRelease 4
\NewReversedHookWithArguments 4
\notexpanded 16

prg commands:

\prg_do_nothing: . 193, 268, 387, 606

\prg_new_conditional:Npnn 311
\prg_new_protected_conditional:Npnn
..................... 107, 450
\prg_return_false: 122, 324, 465
\prg_return_true: 121, 324, 464
prop commands:
\prop_gclear:N 58
\prop_gput:Nnn 51
\prop_map_function:NN 57
\prop_new:N 17

27

Q

quark commands:
\quark_if_recursion_tail_stop_-

do:mn 406, 425
\quark_new:N 15, 16
\g_recursion_stop 395
\g_recursion_tail 395

quark internal commands:
\q__hook_recursion_stop
326, 327, 336, 361, 15

\q__hook_recursion_tail . 326, 340, 15
R

\refstepcounter 5
S

scan commands:
\scan_stop: 452, 453, 511, 512, 547, 548
scan internal commands:
\s__hook_mark 35, 37
113, 118, 312, 323, 457, 460, 472,
476, 481, 516, 536, 552, 564, 24, 26
str commands:

\c_backslash_str 147, 398
\c_hash_str 481, 485, 509
\str_case:nn 595
\str_case:nnTF 40
\str_count:n 161, 236

\str_if_eq:nnTF
. 215, 287, 369, 520, 527, 556, 559

\str_replace_all:Nnn 508
\string 66
T
TEX and BTEX 2¢ commands:
N@ .. 375
\@if@DeclareRobustCommand 126
\@if@newcommand 127, 138, 10
\@kernel@after@begindocument ... 61
\AddToHook 1
\AddToHookNext 2
\AddToHookNextWithArguments 1
\AddToHookWithArguments 1
\apptocmd 2
\DeclareRobustCommand 3
Ndef ... 20
\endlinechar 20
\escapechar 13
\g@addto@macro 61
Nifx 21
\meaning 18
\newcommand 10
\NewCommandCopy 10
\NewDocumentCommand 3

28

\newlinechar 20
\noexpand 22
\patchemd 3
\pretocmd 2
\relax 22
\robust@command@act 90, 6
\robust@command@chk@safe 137, 10
\scantokens 20
\section 3
\ShowCommand 10
tex commands:
\tex_endlinechar:D 447
\tex_escapechar:D 202, 277
\tex_gdef:D 192, 267, 15
\tex_newlinechar:D 448
\tex_xdef:D 198, 273, 15
tl commands:
\c_space_tl 365
\tl_clear:N 196, 271
\tl_const:Nn 11, 12
\tl_gset:Nn 124
\tl_if_empty:nTF 120, 305, 324
\tl_if_head_is_group:nTF 332
\tl_if_head_is_N_type:nTF 329
\tl_if_single_token:nTF 315
\tl new:N 6, 8,9, 10

\tl_put_right:Nn ... 168, 182, 243, 257
. 462, 538, 566, 20, 20
\tl_set:Nn 166, 179, 180

183, 185, 206, 241, 254, 255, 258,
260, 281, 373, 378, 459, 504, 535, 563
\tl_set_eq:NN 197, 272
\tl_to_str:n
. 113, 118, 457, 476, 505, 516, 552
\tl_trim_spaces:n 307, 16
token commands:

\tl_rescan:nn

\token_if_eq_catcode:NNTF 317

\token_if_eq_meaning:NNTF
.................. 187, 262, 463

\token_if_macro:NTF 84, 9

\token_to_meaning:N
80, 460, 472, 536, 564

\token_to_str:N
79, 80, 102, 522, 529, 557, 560

U
\unexpanded 12
use commands:
\use:n 105, 172, 175, 203

212, 247, 250, 278, 284, 350, 383,

406, 425, 454, 484, 506, 513, 549, 17
217, 289
348, 17

\use:nn
\use_i:nnnn

\use_i_delimit_by_q_recursion_- \use_ii_i:nn 216, 288

stop:nw 413, 432 \use_none:n 355, 413, 432
\use_ii:nn 57,139 \UseHook 290, 557, 560, 14
\use_ii:nnnn 353 \UseHookWithArguments .. 219, 522,529, 5

29

	Contents
	1 Introduction
	2 Restrictions and Operational details
	2.1 Patching
	2.1.1 Timing

	2.2 Commands that look ahead

	3 Package Author Interface
	3.1 Arguments and redefining commands

	4 The Implementation
	4.1 Execution plan
	4.2 Variables
	4.3 Variants
	4.4 Patching or delaying
	4.5 Patching commands
	4.5.1 Patching by expansion and redefinition
	4.5.2 Patching by retokenization

	4.6 Messages

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	M
	N
	P
	Q
	R
	S
	T
	U

