
LATEX News
Issue 33, June 2021 (LATEX release 2021-06-01)

Contents

Introduction 1

Extending the hook concept to paragraphs 1

Extending the hook concept to commands 2

Other hook business 2
Shipping out a page while bypassing hooks . . 2
A new Lua callback in ltshipout, for custom

attributes 2

Improved handling of file names 2
File names with spaces, multiple dots or

utf-8 characters 2
Consequences for file names in \include . 2

Normalization of robust commands in file names 2
Fix for filecontents with utf-8 chars in the

file name 2

Updates to the font selection scheme 3
A new hook in \selectfont 3
Change of font series/shape delayed until

\selectfont 3

Glyphs, characters & encodings 3
Improved copy & paste for pdfTEX documents . 3
Support for more Unicode characters 3
More “dashes” in encodings OT1, T1 and TU . . 3
Poor man’s \textasteriskcentered 3
The characters from textcomp are in the kernel 3

A note on the history of “text symbols” . 3

New or improved commands 4
Adjusting itemize labels with \labelitemfont 4
Producing several marks for one footnote . . . 4
Allow \nocite in the preamble 4
Made \\ generally robust 4
Allow extra space between name and address

in letter class 5
Additions to \tracingall 5

Code improvements 5
Execute \par at the end of \marginpar 5
Execute \AtEndDocument hook in vertical mode 5
Color groups made permanent 5
Provide the raw option list to key/value

option handlers 5

New for latexrelease : \NewModuleRelease . . . 6
Small fix for rolling back prior to 2020-02-02 . 6

Changes to packages in the graphics category 6
Removed warning when loading graphics files . 6
Fixed loading of gzipped PostScript files . . . 6

Changes to packages in the tools category 6
layout: Added language options 6
array and longtable: Make \\ generally robust . 6
longtable: General bug fix update 6
trace: Additions to \traceon 6
bm: Better support for commands with

optional arguments 6

Changes to packages in the amsmath category 6

Introduction
The focus of the June 2021 release is to provide further
important building blocks for the future production of
reliable tagged PDF output (see [1]); these enhancements
are discussed in the next two sections.

Subsequent sections describe quite a number of recent
smaller enhancements and fixes. As usual, more detail
on individual changes can be found in the changes.txt
files in the distribution and, of course, in the documented
sources [2].

Extending the hook concept to paragraphs
Largely triggered by the need for better control of
paragraph text processing, in particular when producing
tagged PDF output, we have changed LATEX so that the
kernel gains control both at the start and at the end of
each paragraph. This is done in a manner that is (or
should be) transparent to both packages and documents.

Besides the addition of internal control points for the
exclusive use of the LATEX kernel, we also implemented
four public hooks that can be used in packages
or documents (via the normal hook management
declarations) to achieve special effects, etc. Until now,
such enhancements required redefinitions of \everypar
or \par, which led to the usual issues since such changes
can easily conflict with changes made by other packages.

The documentation of these new “paragraph hooks”,
together with a few examples, is in ltpara-doc.pdf and,
for those who want to study it, the (quite interesting)
code can be found in ltpara-code.pdf. Additionally,

LATEX News, and the LATEX software, are brought to you by the LATEX Project Team; Copyright 2021, all rights reserved.

both of these files are included as part of the full kernel
documentation in source2e.pdf.

Extending the hook concept to commands
Up to now, hook management covered hooks for only
a few core areas, such as the hooks for the \shipout
process or those in the document environment, as well as
some “generic” hooks, both for file loading (helpful for
patching such files) and for arbitrary environments (the
hooks executed within \begin and \end). This concept
of “generic hooks” has now been extended to provide
/before and /after hooks for any (document-level)
command—in theory at least.

In practice, these new generic cmd hooks, especially
the cmd/.../after, hooks may fail with commands that
are too complex to be automatically patched, breaking
if the hook contains any code. These restrictions are
documented in ltcmdhooks-doc.pdf. However, given
that these hooks are mainly meant for developers who
wish to provide better interoperability between different
packages, and between packages and the LATEX kernel,
these restrictions are, we hope, of minor importance.
Indeed, for commands where this mechanism can’t be
applied, one is in the same situation as before; and for
all others there will be a noticeable improvement.

These hooks will be especially important for our
current project to provide accessible and tagged PDF
output [1] because we will eventually have to patch
many third-party packages, and this must be done in
controlled and standardized ways.

Other hook business
Shipping out a page while bypassing hooks
In the 2020 October release, several hooks were added
to control the process of constructing and shipping out
a page box: these support, for example, the addition of
background or foreground material to some or all pages.

We have now added a command, called \RawShipout,
which does not do any rebuilding of the page box and
so does not run most of these hooks. When using this
new command, essential internal book-keeping is still
carried out, such as updating the totalpages counter
and adding shipout/firstpage or shipout/lastpage
material when appropriate.

A new Lua callback in ltshipout, for custom attributes
For use just before shipping out a page, there is now
a LuaTEX callback pre_shipout_filter to contain
final adjustments to the box being shipped out. This
is particularly useful for LuaTEX packages which flag
(using, for example, attributes or properties) elements
on a page in order to apply effects (such as the insertion
of “color commands”) to these elements at shipout.

Improved handling of file names
File names with spaces, multiple dots or utf-8 characters
In one of the recent LATEX releases we improved the
interface for specifying file names so that they can
now safely contain spaces (as is common these days),
more than one dot character, and also utf-8 characters
outside the ascii range. In the past this was only
possible by applying a special syntax in the case of
spaces, while file names with several dots often failed, as
did most utf-8 characters.

Consequences for file names in \include: TEX has a
built-in rule saying that you can normally leave out
the extension if it is .tex. Thus \input{file} and
\input{file.tex} both load file.tex (if it exists).
While this is convenient most of the time, it is a little
awkward in some scenarios (for example, when both
file and file.tex exist) and also when you manually
try to implement the rule.

LATEX therefore had one special syntax for \include
and \includeonly: they always expected that their
arguments contain a file name1 with no extension given,
so that it had to be .tex. Thus, when you mistakenly
wrote \include{mychap.tex} (for example, because
you changed from \input to \include), LATEX went
ahead and looked for the file mychap.tex.tex for
inclusion and tried to use the file mychap.tex.aux for
internal (auxiliary) information. The reason was that
\include had to construct both of these file names from
the given argument and it didn’t bother to do anything
special with the supplied extension .tex.

With the new implementation this has changed: the
extension .tex now gets removed/ignored if it was
supplied. Thus \include{mychap.tex} now no longer
looks for mychap.tex.tex but loads mychap.tex and
uses mychap.aux. (github issue 486)

Normalization of robust commands in file names
The handling of file names has been modified so
that \string is applied to normalize robust com-
mands within the file name. Previously, for example,
\input{\sqrt{2}} would cause LATEX to loop indefi-
nitely whereas with the new normalization it looks for
the file named sqrt {2}.tex (and therefore very likely
reports “file not found”). (github issue 481)

Fix for filecontents with utf-8 chars in the file name
Since a few releases back, the filecontents environment
has allowed utf-8 characters in the file name. There
was, however, a bug that would not allow overwriting
a file with utf-8 characters in its name. This has been
fixed and now filecontents allows any characters in
the file name. (github issue 415)

1In the case of \includeonly, a comma-separated list of such
names.

–2

https://github.com/latex3/latex2e/issues/486
https://github.com/latex3/latex2e/issues/481
https://github.com/latex3/latex2e/issues/415

Updates to the font selection scheme
A new hook in \selectfont
After \selectfont has changed the font, we now
run a hook (selectfont) so that packages can make
final adjustments. This functionality was originally
provided by the everysel package but our implementation
is slightly different and uses the standard hook
management. (github issue 444)

Change of font series/shape delayed until \selectfont
With the NFSS extensions introduced in 2020, the font
series and shape settings can be influenced by changes
to the font family. The settings of these two are now
therefore delayed until \selectfont is executed; this
avoids unnecessary or incorrect substitutions that may
otherwise happen due to the order of declarations.

(github issue 444)

Glyphs, characters & encodings
Improved copy & paste for pdfTEX documents
When compiling with pdfTEX, additional information
(from the file glyphtounicode.tex) is now added
automatically to the PDF file in order to improve
copying from, and searching in, text.

In particular, this allows the most common ligatures
to be copied as intended from all generated PDF files
without the need to explicitly load the package cmap.

(github issue 465)

Support for more Unicode characters
LATEX is quite capable of typesetting characters such as
“m. ”, but until now it could not access some Unicode
characters from the Latin Extended Additional block.
This meant that, for example, there were no Unicode
mappings for some characters that are used to write
Sanskrit words in Latin transliteration (as seen in books
about yoga, Buddhist philosophy, etc.). These characters
have now been added so that they can be entered directly
instead of using \d{m}, etc. (github issue 484)

More “dashes” in encodings OT1, T1 and TU
When pasting in text from external sources, one
can encounter these three Unicode characters "2011
(non-breaking hyphen), "2012 (figure dash) and "2015
(horizontal bar), in addition to the more common "2013
(en-dash) and "2014 (em-dash). In the past, these first
three produced an error message when used with pdfTEX
(since they are not available in OT1 or T1 encoded fonts).
They now typeset an approximation to the glyph: e.g.,
the “figure dash” is approximated by an en-dash.

With Unicode engines they either work (when the
glyph is contained in the selected Unicode font) or
they typeset nothing, producing a “Missing character”
warning in the log file.

With all engines these characters can also
now be accessed using the command names
\textnonbreakinghyphen, \textfiguredash and
\texthorizontalbar, respectively. (github issue 404)

Poor man’s \textasteriskcentered
The \textasteriskcentered symbol, used as part of
the set of footnote symbols in LATEX, is assumed to be
implemented by every font with the TS1 encoding (when
pdfTEX is used) or with the TU encoding for the Unicode
engines. That assumption is unfortunately not correct
for all fonts since, for example, the stix2 fonts don’t
provide this glyph. A result is that one gets missing
glyph messages when using \thanks, etc.

Therefore \textasteriskcentered now checks
whether there is such a glyph and, if not, uses a normal
“*”, but slightly enlarged and lowered. This may not
be perfect in all cases, but it is certainly better than no
glyph showing up. (github issue 502)

The characters from textcomp are in the kernel
A couple of releases back, the functionality of the
textcomp package was integrated into the LATEX kernel.
Thus it is no longer necessary to load this package
in order to access glyphs such as \textcopyright,
\texteuro or \textyen.

At this time the opportunity was also taken to bring
some order to the chaos surrounding the question:
“which glyphs from the TS1 encoding are available
in a given font?”. This was done using an approach
based on font families and collections, with the differing
glyph coverage of the ‘text symbols’ being indicated by
assigning to a font family or collection a “sub-encoding
number” that indicates which glyphs from the TS1
encoding are guaranteed to be available when using a
font from that family or collection. This assignment
ensures that LATEX always errs on the side of caution,
possibly claiming that a glyph is not available even when
it in fact is.

A note on the history of “text symbols” and the TS1
encoding: The “text symbol encoding” (TS1) was
originally designed at the Cork Conference as a
companion to the T1 encoding. In it various symbols
that are not subject to hyphenation got assembled and
the textcomp package was developed to make them
accessible. Unfortunately the TEX community was a
bit too enthusiastic and included several symbols only
available in a few TEX fonts and some, such as the
capital accents, not available at all but developed as
part of the reference font implementation.

In hindsight that was a very bad idea because it
meant that other existing fonts (at the time) and later
new fonts that got developed were unable to provide the
full set of glyphs that made up the TS1 encoding. For

–3

https://github.com/latex3/latex2e/issues/444
https://github.com/latex3/latex2e/issues/444
https://github.com/latex3/latex2e/issues/465
https://github.com/latex3/latex2e/issues/484
https://github.com/latex3/latex2e/issues/404
https://github.com/latex3/latex2e/issues/502

existing free PostScript fonts people took the extra effort
and produced virtual fonts that faked (some) of the
missing glyphs. But this was and is a time-consuming
effort so it was done for only a few basic fonts. But
even then, only some fonts included all glyphs from
TS1 so the textcomp already back then contained a long
list, dividing fonts into 5 categories according to which
glyphs were implemented and which were missing.

When we recently integrated the functionality of the
textcomp into the LATEX kernel many new free fonts
had appeared and unfortunately the chaos around
the question “which glyphs of the TS1 encoding are
implemented by which font” had increased with it.
Not only did one find many new holes, it was next to
impossible to order the set of fonts into a reasonable set
of sub-encodings that are contained in each other in a
single sequence.

In the end we decided on nine or ten sub-encodings
with a reasonable number of fonts in each so that all
fonts implemented all glyphs of the sub-encoding they
got mapped to. Thus when typesetting with a font
one could be sure that a command like \textcopyleft
would either typeset the requested character (if the glyph
was part of the sub-encoding the font belonged to) or it
would raise an error, saying that the glyph is unavailable
in that font. The mapping would ensure that LATEX
always errs on the side of caution, because it might
claim a glyph is unavailable even though in fact it is.

For example, the old pcr (PostScript Courier) font
(as well as most other older PS fonts) is mapped to sub-
encoding 5 and therefore claims that \textasciigrave
is unavailable even though in fact for Courier this is not
true. If one uses such a font and this becomes an issue
then there are a couple (suboptimal) possibilities. For
one, one can alter the mapping of Courier and pretend
that belongs to a fuller sub-encoding, e.g.

\DeclareEncodingSubset{TS1}{pcr}{2}

The downside is, that LATEX then believes other glyphs
that are in fact unavailable are also there, so that it is
important to check that the final document doesn’t have
some missing glyphs.

An alternative is to pretend that \textasciigrave
can always be taken from the TS1 encoding (no questions
asked):

\DeclareTextSymbolDefault{\textasciigrave}{TS1}

Again there is a danger that this is not true when it is
used with a different font and would then generate a
missing glyph.

Finally, and possibly the best solution, if not
impossible for other reasons, is to simply use a different
font, for example, to use the TEX Gyre Cursor font (a
reimplementation of Courier with a much more complete
glyph set).

New or improved commands
Adjusting itemize labels with \labelitemfont
The command \labelitemfont was introduced already
with the LATEX release 2020-02-02, but back then we
forgot to describe it, so we do this now. Its purpose is
to resolve some bad formatting issues with the itemize
environment and also to make it easier to adjust the
layout when necessary. What could happen in the
past was that the itemize labels (e.g., the •) would
sometimes react to surrounding font changes and could
then suddenly change shape, for example to •.

This new command \labelitemfont, which defaults
to \normalfont, can be used to provide additional
control in the typesetting of each label. Thus by
choosing different settings other effects can be achieved.
Here are two examples:

\renewcommand\labelitemfont
{\normalfont\fontfamily{lmss}\selectfont}

\renewcommand\labelitemfont
{\rmfamily\normalshape}

The first definition will take the symbols from the font
Latin Modern Sans, so that you get •, –, ∗ and· ; while
the second variant freezes the font family and shape,
but leaves the series as a variable quantity, so that an
itemize in a bold context would show bolder symbols.
Making \labelitemfont empty would give you back
the buggy old behavior. (github issue 497)

Producing several marks for one footnote
It is sometimes necessary to reference the same footnote
several times: i.e., to produce several footnote marks
using the same number or symbol. This is now easily
possible by placing a \label within the referenced
\footnote and referencing this label by using the
new command \footref. This means that footnote
marks can be generated to refer to arbitrary footnotes
(including those in minipages).

This \footref command has previously been
available, but only when using certain classes or the
footmisc package. (github issue 482)

Allow \nocite in the preamble
A natural place for \nocite{*} would be the preamble
of the document, but for historical reasons LATEX issued
an error message if it was placed there. This command
is now allowed in the preamble. (github issue 424)

Made \\ generally robust
In 2018 most LATEX user-level commands were made
robust, including the \\ command. However, \\ gets
redefined in various environments and not all these cases
were caught: such as, in particular, its use as the row
delimiter in tabular structures. This has been corrected
so that \\ should now be robust in all circumstances.

–4

https://github.com/latex3/latex2e/issues/497
https://github.com/latex3/latex2e/issues/482
https://github.com/latex3/latex2e/issues/424

This change also fixed one anomaly present in the
past: in a tabular preamble of the form

{l>{\raggedright}p{10cm}r}

a \\ in the second column would have the definition
used within \raggedright and so it would not indicate
the (premature) end of the tabular. Thus, for example,

a & b1 \\ b2 & c \\

was interpreted as a single row of the tabular (as
intended), whereas

a & \\ b2 & c \\

resulted in two rows! This happened because the \\
directly following the & got interpreted while it still had
the “end the row” meaning and not yet the “start a new
line within the second column” meaning.

With \\ now being robust, the special scanning mode
initiated by the & ends immediately when this command
is seen: the second column is therefore then started,
which results in the \\ being interpreted as being
within that column and hence as having its expected,
within-column, meaning.

We have restored consistency here: now both of the
above lines produce a single tabular row. As before,
you can put \raggedright\arraybackslash in the
tabular’s preamble for a column to ensure that \\ is
always interpreted as a tabular row separator when used
in that column. And you can use \tabularnewline
to explicitly ask for a new table row, even when \\
has a different meaning within the current column.

(github issue 548)

Allow extra space between name and address in letter class
The \opening command in the letter class expects the
name and address to be separated by \\, but it didn’t
allow the use of an optional argument to add some extra
space after the name. The code has now been slightly
altered to allow this. (github issue 427)

Additions to \tracingall
In July 2020 David Jones suggested an extension
to TEX engines, that added the possibility to set
\tracinglostchars=3 in order to generate an error
message in case some character is missing from a
font. In previous years, a warning about a miss-
ing character was silently printed to the .log file
(if \tracinglostchars > 0) and to the terminal
(if > 1). This extension was added for TEX Live and
MiKTEX (except in Knuth’s TEX, of course), so that
with \tracinglostchars > 2 you now also get an error
message for each missing glyph.

Later, in January 2021, Petr Olšák suggested
yet another extension: a new primitive parameter
\tracingstacklevels that, when both it and
\tracingmacros are positive, will add to the tracing

information for each macro a visual indication (using
dots) of its nesting level in the macro expansion stack.

These changes have both now been added to LATEX’s
debugging macros \tracingall and \tracingnone, so
that these two new extensions are activated/deactivated
as appropriate, so long as the TEX engine supports them.
An example document demonstrating these parameters
is in the linked GitHub issue. (github issue 524)

Code improvements
Execute \par at the end of \marginpar
Previously, LATEX ended a \marginpar without ever
explicitly calling \par. This command is now explicitly
added because it is essential to the correct working of
the paragraph hooks.

Another case where this issue caused problems was
the lineno package, where the last line was not numbered
if the \marginpar ended without an explicit \par.

(github issue 489)

Execute \AtEndDocument hook in vertical mode
Until now \end{document} executed the code from the
\AtEndDocument hook as its first action. This meant
that this hook was executed in horizontal mode if the
user left no empty line after the last paragraph. As
a result, one could get a spurious space added when,
for example, that code contained a \write statement.
This was fixed and now \enddocument first issues a
\par to ensure that it always goes into vertical mode.

(github issue 385)

Color groups made permanent
The use of color in certain LATEX constructs, especially
boxes, needs an extra layer of grouping to ensure
that the color setting does not escape and continue
outside the box when it shouldn’t. To support this,
the LATEX kernel defines a number of commands, e.g.,
\color@begingroup to be used in such places.

Until now, these commands were initially set as no-ops
and only the color packages redefined them to become
real groups; this methodology complicates the coding
as one has to account for a group being present or not
(depending on what is loaded in the document). The
kernel therefore now permanently adds these “color
groups”. (github issue 488)

Provide the raw option list to key/value option handlers
Before any further processing of the option list, the
original (un-normalized, “raw” and unchanged) list of
package or class options is now saved, as \@raw@opt@...;
this list is not used by the standard option processing
code but it is now available for use by extended
class/package processing systems. Note that, for
compatibility reasons, the standard option processing
code has not been changed.

–5

https://github.com/latex3/latex2e/issues/548
https://github.com/latex3/latex2e/issues/427
https://github.com/latex3/latex2e/issues/524
https://github.com/latex3/latex2e/issues/489
https://github.com/latex3/latex2e/issues/385
https://github.com/latex3/latex2e/issues/488

One aspect of this change does affect the standard
processing: any tokens to the right of an = sign are
removed from consideration when constructing the
“unused option list”. For example, in this release
clip=true and clip=false both contribute clip to the
list of options that have been used. (github issue 85)

New for latexrelease : \NewModuleRelease
To explain the need for this new feature, we shall
consider the following example: in the 2020-10-01
release, LATEX’s new hook management system was
added to the kernel (see [3]) and, as with all changes
to the kernel, it was added to latexrelease; this made it
possible to roll back to a date where this module didn’t
yet exist, or to roll forward from an older LATEX release
to get the hook management system (by loading the
latexrelease package). However, this method of rolling
back from a later release to the 2020-10-01 release
didn’t quite work because it would try to define all the
commands from lthooks again; and this would of course
result in the expected errors from commands defined
with \newcommand or (as in lthooks) \cs_new:Npn.

To solve such issues, we now provide
\NewModuleRelease so that completely new mod-
ules can be defined using the facilities of latexrelease
in such a way that, when rolling back or forward, the
system will know whether the code of the new module
has to be read or completely ignored. More details on
this can be found in the latexrelease documentation (get
this with texdoc latexrelease). (github issue 479)

Small fix for rolling back prior to 2020-02-02
Whereas the latexrelease package can usually emulate an
older LATEX kernel without much problem, rolling back to
before the 2020-02-02 release didn’t work properly: this
is because the management of the \ExplSyntaxOn/Off
status for packages (after an expl3-based package is
loaded) cannot be removed by the rollback without
messing up the catcodes. This has been fixed so that
rollback is now more careful not to leave \ExplSyntaxOn
after a package ends. (github issue 504)

Changes to packages in the graphics category
Removed warning when loading graphics files
A previous release sometimes mistakenly caused a
(false) warning message to appear when using a generic
graphics rule to find and load a graphics file with an
unknown extension. This warning would incorrectly say
that the file was not found, whereas the file would in
fact be correctly loaded. The warning now doesn’t show
up in that case. (github issue 516)

Fixed loading of gzipped PostScript files
A previous release mistakenly changed the file searching
mechanism so that compressed PostScript graphics

files would raise an error when being loaded with
\includegraphics. This has been fixed so that gzipped
graphics files now load correctly. (github issue 519)

Changes to packages in the tools category
layout: Added language options
This package now recognizes japanese and romanian as
language options. (github issues 353 and 529)

array and longtable: Make \\ generally robust
The fix for this issue was also applied to these packages;
see above. (github issue 548)

longtable: General bug fix update
This is a minor update to the longtable package that
fixes several reported bugs: notably the possibility of
incorrect page breaks when floats appear on the page
where a longtable starts. As this may affect page
breaking in existing documents, a rollback to longtable
4.13 (longtable-2020-01-07.sty) is supported.

(gnats issue tools/2914 3396 3512)
(github issue 133 137 183 464 561)

trace: Additions to \traceon
The \tracingstacklevels and \tracinglostchars
extensions to \tracingall (see above) were also added
to \traceon in the trace package, so its users can
also benefit from these new debugging possibilities.

(github issue 524)

bm: Better support for commands with optional arguments
Some uses of optional arguments in \bm stopped being
supported (in 2004) when \kernel@ifnextchar was
used internally by the format instead of \@ifnextchar.
This update handles both versions of this command and
restores the original behavior.

In addition, package options for guiding the use of
“poor man’s bold” in fallback situations were added.

(github issue 554)

Changes to packages in the amsmath category
The fix for issue 548 was also applied in amsmath; see
above. (github issue 548)

References
[1] Frank Mittelbach and Chris Rowley: LATEX Tagged

PDF—A blueprint for a large project.
https://latex-project.org/publications/
indexbyyear/2020/

[2] LATEX documentation on the LATEX Project Website.
https://latex-project.org/help/documentation/

[3] LATEX Project Team: LATEX 2ε news 32.
https://latex-project.org/news/latex2e-news/
ltnews32.pdf

–6

https://github.com/latex3/latex2e/issues/85
https://github.com/latex3/latex2e/issues/479
https://github.com/latex3/latex2e/issues/504
https://github.com/latex3/latex2e/issues/516
https://github.com/latex3/latex2e/issues/519
https://github.com/latex3/latex2e/issues/353
https://github.com/latex3/latex2e/issues/548
https://www.latex-project.org/cgi-bin/ltxbugs2html?pr=tools%2F2914
https://github.com/latex3/latex2e/issues/133
https://github.com/latex3/latex2e/issues/524
https://github.com/latex3/latex2e/issues/554
https://github.com/latex3/latex2e/issues/548
https://latex-project.org/publications/indexbyyear/2020/
https://latex-project.org/publications/indexbyyear/2020/
https://latex-project.org/help/documentation/
https://latex-project.org/news/latex2e-news/ltnews32.pdf
https://latex-project.org/news/latex2e-news/ltnews32.pdf

	Introduction
	Extending the hook concept to paragraphs
	Extending the hook concept to commands
	Other hook business
	Shipping out a page while bypassing hooks
	A new Lua callback in ltshipout, for custom attributes

	Improved handling of file names
	File names with spaces, multiple dots or utf-8 characters
	Consequences for file names in \include

	Normalization of robust commands in file names
	Fix for filecontents with utf-8 chars in the file name

	Updates to the font selection scheme
	A new hook in \selectfont
	Change of font series/shape delayed until \selectfont

	Glyphs, characters & encodings
	Improved copy&paste for pdfTeX documents
	Support for more Unicode characters
	More ``dashes'' in encodings OT1, T1 and TU
	Poor man's \textasteriskcentered
	The characters from textcomp are in the kernel
	A note on the history of ``text symbols''

	New or improved commands
	Adjusting itemize labels with \labelitemfont
	Producing several marks for one footnote
	Allow \nocite in the preamble
	Made \\ generally robust
	Allow extra space between name and address in letter class
	Additions to \tracingall

	Code improvements
	Execute \par at the end of \marginpar
	Execute \AtEndDocument hook in vertical mode
	Color groups made permanent
	Provide the raw option list to key/value option handlers
	New for latexrelease: \NewModuleRelease
	Small fix for rolling back prior to 2020-02-02

	Changes to packages in the graphics category
	Removed warning when loading graphics files
	Fixed loading of gzipped PostScript files

	Changes to packages in the tools category
	layout: Added language options
	array and longtable: Make \\ generally robust
	longtable: General bug fix update
	trace: Additions to \traceon
	bm: Better support for commands with optional arguments

	Changes to packages in the amsmath category

