IXTEX3 News, Issues 1-12

Contents

Issue 1, February 2009
Welcome to BTEX3
What currently exists
What’s happening now

What’s happening soon

What’s happening later

Issue 2, June 2009
TEX Live and the expl3 code
Planned updates

New members
Some specifics Lo
The next six months

Issue 3, January 2010
Happy New Year
Recent developments
Upcoming plans

Packages to tackle

Issue 4, July 2010
expl3 in practice
New xpackages
Developments with expl3
TUG 2010 reflections

Issue 5, January 2011
Happy new year
The LPPL is now OSI-approved
Reflections on 2010
Current progress
Plans for 2011.

Issue 6, June 2011
The ETEX3 Team expands
The ‘Big Bang’
ETEX3 on GitHub
Nextsteps.

Issue 7, February 2012
After the ‘Big Bang’
Deforming boxes
A TgX-based regex engine
Xparse iImproves
Thegalley
Relationships between document items

co 0o Co Cco @ N oo oo [N S SN W wWw w www

NeJiNe Ve JiNe e JiNe]

Issue 8, July 2012
Extended floating point support
Regular expressions in TEX

Separating internal and external code
Naming convention for internals.
Continual revolution—the ‘small bang’

Issue 9, March 2014
Hiatus?
expl3 in the community

Logo for the I TEX3 Programming Language
Recent activity

Work in progress

Uppercasing and lowercasing

Space-skipping in xparse

...and for 2014 onwards

What can you do for The KTEX Project?
Programming Layer

Design Layer
Document Interface Layer
In Summary L.

And something else . ..

Issue 10, November 2016

[3build: Testing XTEX packages

Automating expl3 testing
Refining expl3 L.
Replacing \lowercase and \uppercase
Extending xparse
A new \parshape model
Globally optimized pagination of documents . .

Looking forward
Issue 11, February 2018
Move of sources from Subversion to Git
Version identifiers
expl3 updates and extensions

|13sort moves to the kernel

Boolean functions
Revision of 13file

Detection of \cs_generate_variant:Nn
eITors

Accessing random data
More powerful debugging

Mark-up changes in 13doc
[3build updates

13
13
13
13
14
14

16
16
16

17
17
17
18
18
19
19
19
20
20
20

21
21
21
21
21
22
22
22
22

Issue 12, January 2020 25

Introductiono oL 25
New featuresinexpl3. 25
A new argument specifier: e-type 25
New functions 25
String conversion moves to expl3 26
Case changing of text 26
Notable fixes and changes 26
File name parsing 26
Message formatting 26
Key inheritance 26
Floating point juxtaposition 26
Changing box dimensions 26
More functions moved to stable 26
Deprecations 26
Internal improvements 26
Cross-module functions 26
The backend 27
Better support for (u)pTeX 27
Options 27
Engine requirementso 27
Documentation 27
Newso o o 27
Changelog 27
Changes in xparse 27
New experimental modules 27
[3build changes 27

INTEX3 News

Issue 1, February 2009 (WTEX release 2009-02-01)

Welcome to IATEX3

Momentum is again starting to build behind The IATEX
Project. For the last few releases of TEX Live, the ex-
perimental programming foundation for IATFEX3 has
been available under the name expl3. Despite large
warnings that the code would probably change in the
future, we wanted to show that there was progress be-
ing made, no matter how slowly. Since then, some peo-
ple have looked at the code, provided feedback, and —
most importantly — actually tried using it. Although
it is yet early days, we believe that the ideas behind the
code are sound and there are only ‘cosmetic improve-
ments’ that need to be made before expl3 is ready for
the IATEX package author masses.

What currently exists

The current IATEX3 code consists of two main branches:
the expl3 modules that define the underlying program-
ming environment, and the ‘xpackages’, which are a
suite of packages that are written with the expl3 pro-
gramming interface and provide some higher-level func-
tionality for what will one day become IATEX3 proper.
Both expl3 and parts of the xpackages are designed to
be used on top of IATEX 2¢, so new packages can take
advantage of the new features while still allowing to be
used alongside many of the vast number of INTEX 2¢
packages on CTAN.

What's happening now

In preparation for a minor overhaul of the expl3 code,
we are writing a comprehensive test suite for each
module. These tests allow us to make implementation
changes and then test if the code still works as before.
They are also highlighting any minor shortcomings or
omissions in the code. As the tests are being written,
our assumptions about what should be called what and
the underlying naming conventions for the functions
and datatypes are being questioned, challenged, and
noted for further rumination.

At the time of writing, we are approximately half-way
through writing the test suite. Once this task is com-
plete, which we plan for the first half of 2009, we will
be ready to make changes without worrying about
breaking anything.

What's happening soon

So what do we want to change? The current expl3
codebase has portions that date to the pre-IATEX 2¢
days, while other modules have been more recently con-
ceived. It is quite apparent when reading through the
sources that some unification and tidying up would im-
prove the simplicity and consistency of the code. In
many cases, such changes will mean nothing more than
a tweak or a rename.

Beyond these minor changes, we are also re-thinking
the exact notation behind the way functions are de-
fined. There are currently a handful of different types
of arguments that functions may be passed (from an
untouched single token to a complete expansion of a
token list) and we’re not entirely happy with how the
original choices have evolved now that the system has
grown somewhat. We have received good feedback from
several people on ways that we could improve the ar-
gument syntax, and as part of the upcoming changes
to the expl3 packages we hope to address the problems
that we currently perceive in the present syntax.

What's happening later

After the changes discussed above are finished, we

will begin freezing the core interface of the expl3 mod-
ules, and we hope that more package authors will be
interested in using the new ideas to write their own
code. While the core functions will then remain un-
changed, more features and new modules will be added
as IATEX3 starts to grow.

Some new and/or experimental packages will be chang-
ing to use the expl3 programming interface, including
breqn, mathtools, empheq, fontspec, and unicode-math.
(Which is one reason for the lack of progress in these
latter two in recent times.) There will also be a ver-
sion of the siunitx package written in expl3, in parallel
to the current INTEX 2¢ version. These developments
will provide improvements to everyday IATEX users who
haven’t even heard of The IATEX Project.

Looking towards the long term, IANTEX3 as a docu-
ment preparation system needs to be written almost
from scratch. A high-level user syntax needs to be de-
signed and scores of packages will be used as inspiration
for the ‘out-of-the-box’ default document templates.
IATEX 2¢ has stood up to the test of time — some fif-
teen years and still going strong — and it is now time
to write a successor that will survive another score.

IATEX3 News, and the INTEX software, are brought to you by the INTEX Project Team; Copyright 2009, all rights reserved. -3

INTEX3 News

Issue 2, June 2009 (IATEX release 2009-06-01)

TEX Live and the expl3 code

TEX Live 2009 is almost upon us, and the IXTEX3 team
have been readying a new release of the experimen-

tal XTEX3 code for this. Very dramatic changes have
occurred since the last public release of the code in
TEX Live 2008; no backwards compatibility has been
maintained (as warned in the beginning of the doc-
umentation) but we believe the changes made are all
much for the better. Almost every single part of expl3
has been scrutinized, resulting in a far more coherent
code base.

The expl3 code is now considered to be much more sta-
ble than it was before; a comprehensive test suite has
been written that helps to ensure that we don’t make
any mistakes as we change things in the future. In the
process of writing the test suite, many minor bugs were
fixed; we recommend such test suites for all similar de-
velopmental projects! Some small underlying changes
are still expected in the expl3 code, but major, disrup-
tive, changes aren’t planned.

Planned updates

Until now, the last update to CTAN of the expl3 bun-
dle was for TEX Live 2008. Now that work on the code
is happening on a semi-steady basis, we plan to keep
updates rolling out to CTAN more frequently. This will
allow anyone who wishes to experiment with the new
code to use the TEX Live or MiKTEX updaters to in-
stall a recent version without having to ‘check out’ the
SVN repository and install the packages manually.

New members

We didn’t say anything about it in the last status up-
date, but Joseph Wright and Will Robertson are now
members of the INTEX Team. They have been working
fairly exclusively on the expl3 code.

It’s worth repeating that IXTEX 2¢ is essentially frozen
in order to prevent any backwards compatibility prob-
lems. As desirable as it is to benefit from the new fea-
tures offered by new engines X#IEX and LuaTgX, we
cannot risk the stability of production servers running
older versions of ITEX 2¢ which will inevitably end up
processing documents written into the future.

ETEX3 will not be inheriting the same restraints, so
stay tuned.

IATEX3 News, and the INTEX software, are brought to you by the INTEX Project Team; Copyright 2009, all rights reserved.

Some specifics

Morten Hggholm will be presenting the recent changes
in much more detail at TUG 2009. Here are some quick
specifics for those interested. New code written and
broad changes made to the expl3 modules:

More logical function names Many function names
that were hold-outs from the TEX naming sys-
tem have been changed to fit into the more logical
scheme of expl3; e.g., \def:Npn and \let:NN are
now \cs_set:Npn and \cs_set_eq:NN.

Defining functions and conditionals Much thought
was put into new ways to define functions and con-
ditionals with a minimum of code. See \cs_set:Nn
and \prg_set_conditional:Nnn.

Smart comparisons Comparisons can be made much
more easily now, with familiar notation such as
\intexpr_compare_p:n{ #1+3 != \1_tmpa_int }.

Data from variables A new function argument spec-
ifier V has been added for extracting information
from variables of different types, without needing
to know the underlying variable structure. Some
other tidy-ups on the argument specifiers offered,
partially as a result of the addition of this new one.

13msg New module to deal with communication be-
tween BTEX3 code and the user (info messages,
warnings, and errors), including message filtering
partially inspired by the silence package.

The next six months

Having overhauled the expl3 code, we now plan to per-
form an analogous process with the foundations of the
xpackages. These are the higher-level packages that will
provide the basic needs such as control of the page
layout and rich document-level interaction with the
user. As the groundwork for this layer of the document
processing matures, we will be able to start building
more packages for a INTEX3 kernel; these packages will
also be usable on top of INTEX 2¢ and serve as broadly
customisable templates for future document design.

As gaps in the functionality offered by expl3 are found
(in some cases, we know that they exist already), the
programming layer will be extended to support our
needs. In other cases, wrappers around TEX functions
that can be more usefully handled at a higher level will
be written.

In terms of what we're planning to work on next, three
xpackages will take the focus of our attention.

xbase ‘xbase’ is actually two packages: xparse and tem-
plate. These contain code for, respectively, defin-
ing new document commands (such that a user
would use; e.g., \section, \makebox, ...) and for
handling keyval lists for user input and document
specification. xparse was presented at TUG 1999"
and Lars Hellstrom wrote some notes on template
in 2000°. Functionality coverage for these pack-
ages is good but concepts need a good “airing”.
There are various approaches taken for keyval in-
put, some more recent than the template code, so
there are some alternatives to evaluate.

galley2 Sophisticated handling for constructing para-
graphs and other document elements. Morten
spoke on this at TUG 2008>. Design needs to be
revisited after some stress testing.

xor This is the IXTEX3 output routine for splitting the
galley into page and sub-page sized chunks. Ideas
and code need work to move to “production ready
status. Early developments with this package were
published by Frank in 2000%.

)

Expect to hear again from us at Christmas. If you’d
like to discuss any of these ideas, please join us on the
LATEX-L mailing list”.

Thttp://www.latex-project.org/papers/tug99.pdf
2http://www.latex-project.org/papers/template-notes.pdf
Shttp://river-valley.tv/the-galley-module/
4http://www.latex-project.org/papers/xo-pfloat.pdf
Shttp://www.latex-project.org/code.html

http://www.latex-project.org/papers/tug99.pdf
http://www.latex-project.org/papers/template-notes.pdf
http://river-valley.tv/the-galley-module/
http://www.latex-project.org/papers/xo-pfloat.pdf
http://www.latex-project.org/code.html

INTEX3 News

Issue 3, January 2010 (I¥TEX release 2010-01-01)

Happy New Year

Welcome to the holiday season edition of ‘news of our
activities’ for the INTEX3 team.

Recent developments

The last six months has seen two significant releases in
the IATEX3 code. In the CTAN repository for the xpack-
ages,! you’ll find two items of interest:

e A revised version of xparse; and

e The new package xtemplate, a re-implementation of
template with a new syntax.

Special thanks to Joseph Wright who handled the im-

plementations above almost single-handedly (with lots

of input and feedback from other members of the team
and members of the LATEX-L mailing list).

These two packages are designed for the IXTEX package
author who wishes to define document commands and

designer interfaces in a high-level manner.

xparse This package allows complex document com-
mands to be constructed with all sorts of optional argu-
ments and flags. Think of how \newcommand allows you
to create a command with a single optional argument
and xparse is a generalisation of that idea.

xtemplate This package requires more explanation.
Xtemplate is designed to separate the logical infor-
mation in a document from its visual representation.
‘Templates’ are constructed to fulfil individual typeset-
ting requirements for each set of arguments; to change
the look of a certain part of a document, instantiations
of templates can be swapped out for another without
(a) having to change the markup of the source docu-
ment, or (b) having to edit some internal IATEX macro.
IXTEX 2¢ packages, such as geometry or titlesec, already
provide parameterized interfaces to specific document
elements. For example, one may use titlesec to change
the layout of a \section: one modifies its layout pa-
rameters via \titleformat and \titlespacing. In a
way, such packages define a template for a specific doc-
ument element and some manipulation commands to
instantiate it. However, the moment the intended lay-

Thttp://mirror.ctan.org/tex-archive/macros/latex/
contrib/xpackages/

out is not achievable with one package you are on your
own: either you have to resort to low-level program-
ming or find some other high-level package which, of
course, comes with its own set of conventions and ma-
nipulation commands.

The xtemplate package can be thought of a generaliza-
tion of such ideas. It provides a uniform interface for
defining and managing templates for any kind of docu-
ment element and most importantly provides a uniform
interface for instantiating the layout.

Thus the designer activity of defining or modifying a
document class is limited to selecting the document
elements that should be provided by the class (e.g.,
\chapter, \section \footnote, lists, ...), selecting
appropriate “named” templates for each of them, and
instantiating these templates by specifying values for
their layout parameters. If a desired layout can’t be
achieved with a given template a different template for
the same document element can be selected.
Programming is only necessary if no suitable template
for the intended layout is available. It is then that a
KETEX programmer has to build a new template that
supports the layout requirements. Once this task is
complete, the template may be added to the selection
of templates that designers and users may choose from
to define or adjust document layouts seamlessly.

This is a slight gloss over the complexities of the pack-
age itself, which you can read about in the documen-
tation. We've tried to document xtemplate clearly but
we’d love feedback on whether the ideas make sense to
you.

As an addendum to the introduction of xtemplate, the
older template package will be retired in the near fu-
ture. To our knowledge there is only a single package
on CTAN that uses template, namely xfrac, and members
of the IATEX team are in the process of switching this
package over to xtemplate. If you have any private code
that uses template, please let us know!

Upcoming plans

Having announced the updated xparse and the new
xtemplate, the next stage of development will revolve
around using these two systems in the other compo-
nents of the xpackages, feeding back our experience in
practise with the original ideas behind the designs and
evaluating if the packages are meeting our expectations.

IATEX3 News, and the INTEX software, are brought to you by the INTEX Project Team; Copyright 2010, all rights reserved. —6

http://mirror.ctan.org/tex-archive/macros/latex/contrib/xpackages/
http://mirror.ctan.org/tex-archive/macros/latex/contrib/xpackages/

Packages to tackle

xhead The first work will be to create a new xpackage
(probably called xhead), for typesetting section head-
ings and other document divisions. Section headings
are one of the more complex areas to work with, so the
work should stress xtemplate enough to know if its cur-
rent design is sufficient for most needs. Nothing has
been released yet, but we’ll announce further develop-
ments on the LATEX-L mailing list? in the mean time.

galley We also need to give galley the same treatment
as xparse and xtemplate have already had. That is, we
have an older implementation (in fact two) that needs
some work before we’re ready to release it to CTAN.
The galley package is used to place material into the
vertical list while typesetting but before page breaks
occur. Since it works at such a low level, it is impor-
tant to solidify this package before writing higher level
design templates.

An issue we have to face is that to achieve best results,
galley cannot be used in concert with ETEX 2¢ code.
This could limit its usefulness, and we may decide that
it’s better to scale back the features we’re attempting,
to allow better interoperability for existing packages
and documents. More work remains before we can de-
cide between these options.

2For details, see http://www.latex-project.org/code.html

http://www.latex-project.org/code.html

INTEX3 News

Issue 4, July 2010 (IATEX release 2010-07-01)

Now that we’re back from the TEX Users Group confer-
ence in San Francisco, it’s time to discuss what’s been
going on over the last six months. Due to some extra
travel plans after the conference, this issue is slightly
late in coming out.

expl3 in practice

Joseph Wright and Will Robertson have both released
significant new versions of their packages, resp., siu-
nitx and fontspec. These have been re-written in the
ETEX3 programming language expl3, which we have
discussed here previously. Using expl3 for production
code has been very successful, both in demonstrating
that the concepts are sound and highlighting areas that
still need some attention.

In the case of fontspec, expl3 programming is being
used to target IMTEX running on either XfITEX and
LuaTgX. In the latter case, the package is a mixture

of Lua code and expl3 code; Will presented the unicode-
math package at TUG 2010, which is developed in the
same style.

New xpackages

Frank Mittelbach has started to work on a new experi-
mental BTEX3 package xhead that provides templates
for one of the most complex areas of document de-
sign: section headings and document divisions. This

is the beginning of an ambitious idea to map out the
requirements for typesetting most documents currently
processed with IATEX.

One of the challenges here is providing a “natural” de-
sign language for describing the two-dimensional spatial
relationships of objects participating in the design, e.g.,
the placement of a heading number in relation to the
heading title, a possible sub-title, etc. In answer to this
challenge Frank developed the xcoffin package, which
he presented at TUG 2010. It is designed as a high-
level interface for placing and aligning boxes on a page,
allowing a ‘designer’s approach’ for indicating the po-
sitional relationship between boxes. (A ‘coffin’ is a box
with handles.) As an example, it is possible to repre-
sent ideas such as ‘align the lower-left corner of box A
with the upper-right corner of box B after rotating it
ninety degrees’, without having to calculate the inter-
mediate positions.

We expect a future version of xcoffin (after some fur-
ther work on its interface layer and its internal imple-

mentation) to play a major role in all packages provid-
ing layout templates for higher-level document objects,
such as table of contents designs, floats, etc.

Finally, Joseph Wright has begun work with the current
‘galley’ packages, producing the new, minimal, xgalley
based on xfm-galley as a testbed for what we need and
what will work.

Developments with expl3

Meanwhile, Joseph’s also been writing a new floating-
point calculation module, called 13fp, for expl3. This
module allows manipulation and calculation of numbers
with a much larger range than TEX allows naturally.
The 13fp module has already been utilised in the xcoffin
code for calculatations such as coordinate rotations and
intersection points of vectors.

The modules I13io and I3file have been revised, rethink-
ing the way that read and write streams are dealt

with. TEX has a hard limit of sixteen input and output
streams open at any one time, and the new implemen-
tation for expl3 provides more flexibility in how they
are allocated; there’s now much less chance of running
into a ‘No room for a new \read (or \write) error.
Sometimes we discuss ideas for expl3 that don’t end

up making it into the final code. One example of this
is the concept of having ‘local registers’ for integers,
boxes, and so on, that do not survive outside of the
group they are defined in (in contrast to Plain TEX
and IATEX, where allocators such as \newcount and
\newbox are always global). Despite the scope for some
small benefit, we decided that the extra complexity
that the additional functions required, in both syntax
and documentation, was not justified.

TUG 2010 reflections

Our interpretation of the broad themes discussed at
the conference are that TEX-based systems are still
thriving and there are some big problems to solve with
robust solutions to transform ITEX source, including
mathematics, into a form such as HTML. While there
are big pushes for standardising various aspects of the
ETEX syntax, we also believe that it is I TEX’s very
flexibility—its inherently non-standardised markup—
that has allowed it to survive for so many years. There
is a delicate trade-off here between moving forward into
more standards-based territory while also retaining the
extensibility of the third-party package system.

IATEX3 News, and the INTEX software, are brought to you by the INTEX Project Team; Copyright 2010, all rights reserved. -8

INTEX3 News

Issue 5, January 2011 (I4TEX release 2011-01-01)

Happy new year

Seasons greetings for 2011! As the previous news is-
sue was released late, this season’s issue will be shorter
than usual.

The LPPL is now OSl-approved

We are happy to report that earlier this year the I TEX
Project Public License (LPPL) has been approved by
the OSI as an open source licence.! Frank Mittelbach
will be publishing further details on this news in a ret-
rospective on the LPPL in an upcoming TUGboat arti-
cle.

Reflections on 2010

We are pleased to see the continued development and
discussion in the TEX world. The ITEX ecosystem con-
tinues to see new developments and a selection of no-
table news from the second half of last year include:

June The TUG 2010 conference was held very success-
fully in San Francisco; videos, slides, and papers
from I¥TEX3 Project members are available from
our website.”

. The TgX Stack Exchange® question & answer web-
site was created and has since grown quickly. At
time of writing, some 2800 people have asked 2600
questions with 5600 answers total, and 2200 users
are currently visiting daily.

Sept. TEX Live 2010 was released: each year the ship-
ping date is earlier; the production process is be-
coming more streamlined and we congratulate all
involved for their hard work. One of the most no-
table new components of TEX Live 2010 includes
the ‘restricted shell escape’ feature to allow, among
other things, automatic EPS figure conversion for
pdfIATEX documents.

Oct. TLContrib* was opened by Taco Hoekwater as a
way to update a TEX Live installation with mate-
rial that is not distributable through tlmgr itself.
Such material includes executables (e.g., new ver-
sions of LuaTEX), non-free code, or test versions of
packages.

Thttp://www.opensource.org/licenses/1ppl
2http://www.latex-project.org/papers/
Shttp://tex.stackexchange.com
4http://tlcontrib.metatex.org/

Nov. Philipp Lehman released the first stable version of
biblatex. One of the most ambitious KTEX pack-
ages in recent memory, biblatex is a highly flexible
package for managing citation cross-referencing
and bibliography typesetting. In ‘beta’ status for
some years now, reaching this point is a great mile-

stone.

Dec. LuaTgX 0.65. We are happy to see LuaTgX de-
velopment steadily continuing. ETEX users may
use LuaTEX with the lualatex program. Like
xelatex, this allows BTEX documents to use mul-
tilingual OpenType fonts and Unicode text input.

Current progress

The expl3 programming modules continue to see revi-
sion and expansion; we have added a LuaTEX module,
but expl3 continues to support all three of pdfIATEX,
XA TEX, and Lual&TEX equally.

The 13fp module for performing floating-point arith-
metic has been extended and improved. Floating point
maths is important for some of the calculations re-
quired for complex box typesetting performed in the
new ‘coffins’ code. The I3coffin module has been added
based on the original xcoffins package introduced at
TUG 2010 as reported in the last news issue; this code
is now available from CTAN for testing and feedback.
We have consolidated the [3int and |3intexpr mod-

ules (which were separate for historical purposes);

all integer/count-related functions are now contained
within the ‘int’ code and have prefix \int_. Backwards
compatibility is provided for, but eventually we will
drop support for the older \intexpr_ function names.

Plans for 2011

In the following year, we plan to use the current EXTEX3
infrastructure to continue work in building high-level
code for designing BTEX documents using the xtemplate
package. Our first priority is to look at section headings
and document divisions, as we see this area as one of
the most difficult, design-wise, of the areas to address.
From there we will broaden our scope to more docu-
ment elements.

We will also do some low-level work on the ‘galley’,
which is the code that IXTEX3 uses to build material

for constructing pages, and we will continue to extend
expl3 into a more complete system from which we can,
one day, create a pure ITEX3 format.

IATEX3 News, and the INTEX software, are brought to you by the INTEX Project Team; Copyright 2011, all rights reserved. -9

http://www.opensource.org/licenses/lppl
http://www.latex-project.org/papers/
http://tex.stackexchange.com
http://tlcontrib.metatex.org/

INTEX3 News

Issue 6, June 2011 (IATEX release 2011-06-01)

A key aim of releasing ‘stable’ K TEX3 material to
CTAN is to allow users to benefit from new ideas now,
and also to raise the profile of usable X TEX3 ideas.
This is clearly being successful, with xparse being of
particular utility to end users. This increase in interest
has been particularly notable on the new TeX.SX Q&A
site.

The IATEX3 Team expands

Raising interest in IATEX3 developments has inevitably
led to feedback on cases where the code base has re-
quired attention. It has also attracted new program-
mers to using IATEX3 ideas, some more than others!
Bruno Le Floch has over the past few months made
many useful contributions to IATEX3, and we are very
pleased that he has recently joined The IATEX Project.
Bruno has taken a particular interest in improving the
performance and reliability of the expl3 language. This
has already resulted in new implementations for the
prop and seq data types. At the same time, he has
identified and fixed several edge-case issues in core
expl3 macros.

The ‘Big Bang’

In parallel to Bruno’s improvements, Joseph Wright ini-
tiated a series of ‘Big Bang’ improvements to INTEX3.
The aim of the Big Bang was to address a number of
long-standing issues with the INTRX3 code base. Devel-
opment has taken place over many years, with the sta-
tus of some of the resulting code being less than clear,
even to members of The IATEX Project! At the same
time, different conventions had been applied to differ-
ent parts of the code, which made reading some of the
code rather ‘interesting’. A key part of the Big Bang
has been to address these issues, cleaning up the exist-
ing code and ensuring that the status of each part is
clear.

The arrangement of IATEX3 code is now the same in
the development repository and on CTAN, and splits
the code into three parts.

13kernel The core of IATEX3, code which is expected
to be used in a IATEX3 kernel in more or less the
current form. Currently, this part is made up of
the INTEX3 programming layer, expl3.

I3packages IATEX 2 packages making use of IATEX3
concepts and with stable interfaces. The xparse

and xtemplate packages are the core of this area.
While many of the ideas explored here may even-
tually appear in a IATEX3 kernel, the interfaces
here are tied to IATEX 2¢.

I3experimental IATREX 2: packages which explore more
experimental IATEX3 ideas, and which may see in-
terface changes as development continues. Over
time, we expect code to move from this area to ei-
ther I3kernel or |3packages, as appropriate.

In addition to these release areas, the development code
also features a I3trial section for exploring code ideas.
Code in I3trial may be used to improve or replace other
parts of IATEX3, or may simply be dropped!

As well as these improvements to the code used in
IATEX3, much of the documentation for expl3 has been
made more precise as part of the Big Bang. This means
that source3.pdf is now rather longer than it was pre-
viously, but also should mean that many of the inaccu-
racies in earlier versions have been removed. Of course,
we are very pleased to receive suggestions for further
improvement.

[ATEX3 on GitHub

The core development repository for INTEX3 is held in
an SVN repository, which is publicly viewable via the
Project website. However, this interface misses out on
some of the ‘bells and whistles’ of newer code-hosting
sites such as GitHub and BitBucket. We have there-
fore established a mirror of the master repository on
GitHub'!. This is kept in synchronisation with the main
SVN repository by Will Robertson (or at least by his
laptop!).

The GitHub mirror offers several useful features for
people who wish to follow the WTEX3 code changes.
GitHub offers facilities such as highlighted differences
and notification of changes. It also makes it possible
for non-Team members to submit patches for KTEX3 as
‘pull requests’ on GitHub.

As well as offering a convenient interface to the IATEX3
code, the GitHub site also includes an issue database?.
Given the very active nature of W TEX3 development,
and the transitory nature of many of the issues, this
provides a better approach to tracking issues than the
main ITEX bug database®. Developers and users are

lhttp://github.com/latex3/svn-mirror
2http://github.com/latex3/svn-mirror/issues
Shttp://www.latex-project.org/bugs.html

IATEX3 News, and the INTEX software, are brought to you by the INTEX Project Team; Copyright 2011, all rights reserved. -10

http://tex.stackexchange.com/
http://tex.stackexchange.com/
http://www.latex-project.org/code.html
http://www.latex-project.org/code.html
http://gitbug.com/
http://bitbucket.org/
http://github.com/latex3/svn-mirror
http://github.com/latex3/svn-mirror/issues
http://www.latex-project.org/bugs.html

therefore asked to report any issues with INTEX3 code
via the GitHub database, rather than on the main
Project homepage. Discussion on the LaTeX-L mailing
list is also encouraged.

Next steps

The ‘Big Bang’ involves making a number of changes
to expl3 function names, and is likely to break at least
some third-party code. As a result, the updates will
not appear on the TEX Live 2011 DVD release, but
will instead be added to TEX Live once regular updates
restart (probably August).

Bruno is working on a significant overhaul of the 13fp
floating-point unit for IATEX3. He has developed an
approach which allows expandable parsing of floating-
point expressions, which will eventually allow syntax
such as

\fp_parse:n { 3 * 4 (1n(5) + 1) }

This will result in some changes in the interface for
floating-point numbers, but we feel that the long-term
benefit is worth a small amount of recoding in other
areas.

Joseph has completed documentation of the xgalley
module, and this is currently being discussed. Joseph
is hoping to move on to implement other more visible
ideas based on the xtemplate concept over the next few
months.

-11

http://www.latex-project.org/code.html
http://www.latex-project.org/code.html

INTEX3 News

Issue 7, February 2012 (WTEX release 2012-02-01)

After the ‘Big Bang’

The last WTEX3 News gave details of the ‘Big Bang’, in
which the team have revised the layout and coverage of
the IWTEX3 codebase. This process has made the sta-
tus of different modules clearer, so that both the team
themselves and everyone else know what is going on.

The ‘Big Bang’ changes were not shipped to CTAN un-
til after the TEX Live 2011 freeze, as we did not want
to end up with a DVD containing badly broken code.
The update went to CTAN soon after TEX Live 2011
shipped, and has now propagated around the world.
The new package naming (I3kernel, 13packages and
[3experimental) has caused some surprises for a small
number of users, but there have not been any major
issues with the changes at the code level.

The ‘Big Bang’ has attracted attention from program-
mers outside of the INTEX3 team, with useful feedback
arriving on the LaTeX-L list and TeX.sx, in particular.
One area that this has highlighted is the need to doc-
ument carefully when changes to the ‘stable’ parts of
the IATEX3 codebase occur. All changes to I13kernel now
come with an explicit date for the change in the docu-
mentation, which means that programmers can check
exactly when the features they want were introduced.

Another key part of supporting I4TEX3 use beyond

the team is making it easy to check on the version of
¥TEX3 installed. To support that, the file date of the
main expl3 package is now set each time there is a re-
lease of the TEX3 material to CTAN. This means that
the ATEX 2¢ \@ifpackagelater test can be used reli-
ably to detect if the installed version of IXTEX3 is going
to supply the functions that a programmer is using.

Deforming boxes

Additions to both the ITEX3 stable material and more
experimental modules continue. Joseph Wright has
been working on adding ‘native’ drivers for IMTEX3 to
support box transformations. These allow box rotation,
clipping and scaling with the drivers dvips, xdvipdfmx
and direct PDF output.

The development of clipping support for the xdvipdfmx
driver has also allowed us to suggest improvements to
the XTEX 2¢ graphics drivers, enabling clipping with
the XqTEX engine.

A TeX-based regex engine

Bruno Le Floch has been improving the efficiency and
robustness of a number of ITEX3 functions. Most no-
tably, he has created a purely TEX-based regular ex-
pression (regex) system for I¥TEX3. This is currently
experimental, but is already proving useful and will
hopefully stabilise over the coming months.

Bruno’s regex system works with all of the supported
engines (pdfTEX, XqTEX and LuaTEX). He has imple-
mented the core ideas of standard regex systems, along
with some TEX-specifics to allow matching and replac-
ing the content of token lists by category code.

Xxparse improves

The xparse module has been overhauled, making the
internal code more efficient and adding additional ar-
gument types. This has also allowed us to deal with a
number of internal bugs, meaning that argument grab-
bing is now more reliable.

The argument grabbers themselves have been reworked
so that in the event of an error, the user will normally
get a meaningful message from TEX rather than one
pointing to xparse internal function names. This should
help in tracking down erroneous input in real docu-
ments.

The galley

As detailed in the last issue, work on the galley module
has been continuing. Discussion of Joseph’s reimple-
mentation of the galley concepts highlighted some im-
portant areas to work on, with the nature of the tem-
plate concept being particularly significant.

More work is still needed to finalise the galley concepts,
but it is clear that some of this will require feedback
from other areas. Joseph therefore hopes to finish work
on the current round of galley improvements by the end
of February, and to return to them once some other
areas have been addressed.

Relationships between document items

The TUuG2011 meeting took place in October in India.
Frank Mittelbach spoke there about ideas for describ-
ing the design relationship between document elements.
These ideas allow a document designer to specify the
design of a document element based on its context
within a document, and progress in this area will likely
lead to an extension in the xtemplate system.

IATEX3 News, and the INTEX software, are brought to you by the INTEX Project Team; Copyright 2012, all rights reserved. -12

INTEX3 News

Issue 8, July 2012 (IATEX release 2012-07-01)

Extended floating point support

Bruno Le Floch has been re-writing the floating point
module to function in an ‘expandable’ manner. This
allows floating point calculations to be computed far
more flexibly and efficiently than before. The expand-
able nature of the new code allows its use inside oper-
ations such as writing to external files, for which pre-
viously any such calculations would have to be pre-
calculated before any of the writing operations began.
Bruno’s work on the floating point module has been
officially released into the main SVN repository for
13kernel; TEX Live 2012 will contain the ‘old’ code for
stability while this year is spent testing the new code in
production environments and ironing out any wrinkles.
Here’s a neat example as suggested in the documenta-
tion, which produces ‘6.278 400 000 000 000 x 10%’:

\usepackage{xparse, siunitx}

\ExplSyntaxOn

\NewDocumentCommand { \calcnum } { m }
{ \num { \fp_to_scientific:n {#1} } }

\ExplSyntax0ff

\calcnum {
round (200 pi * sin (2.3 ~ 5) , 2)
}

This feature is invaluable for simple (and not-so-simple)
calculations in document and package authoring, and
has been lacking a robust solution for many years.
While Lual&TEX can perform similar tasks within its
Lua environment, the floating point support is writ-
ten using the expl3 programming language only, and is
thus available in pdfIATEX and XgATREX as well.

Regular expressions in TEX

As if expandable floating point support wasn’t enough,
Bruno has also written a complete regular expression
engine in expl3 as well. Many reading this will be fa-
miliar with the quote attributed to Jamie Zawinski:

Some people, when confronted with a problem,
think “I know, I'll use regular expressions.”
Now they have two problems.

And as humorous as the saying is, it’s still fair to say
that regular expressions are a great tool for manipulat-
ing streams of text. We desperately hope that people
will not start using the regex code to do things like
parse XML documents; however, for general search—
replace duties, there’s never been anything like 13regex

for the IMTEX world. As a trivial example, there are

0 instances of the word “We’ or ‘we’ in this document
(including those two). This value is counted automati-
cally in two lines of code.

And again, it is available for pdfTEX and XgATEX
users as well as Lual&ATEX ones; it also bears noting
that this provides an easy solution for applying regu-
lar expression processing to ITEX documents and text
data even on the Windows operating system that does
not have native support for such things.

Separating internal and external code

ETEX packages are written by a wide range of package
authors and consist of code and commands for various
purposes. Some of these commands will be intended for
use by document authors (such as \pbox from the pbox
package); others are intended for use by other package
writers (such as \@ifmtarg from the ifmtarg package).
However, a large portion of them are internal, i.e., are
intended to be used only within the package or within
the ITEX kernel and should not be used elsewhere.

For example, \@float is the XTEX kernel interface

for floats to be used in class files, but the actual work
is done by a command called \@xfloat which should
not be used directly. Unfortunately the I¥TEX 2¢ lan-
guage makes no clear distinction between the two, so it
is tempting for programmers to directly call the latter
to save some “unnecessary” parsing activity.

The downside of this is that the “internal” commands
suddenly act as interfaces and a reimplementation or
fix in any of them would then break add-on packages as
they rely on internal behavior. Over the course of the
last twenty years probably 80% of such “internal” com-
mands have found their way into one or another pack-
age. The consequences of this is that nowadays it is
next to impossible to change anything in the BTEX 2¢
kernel (even if it is clearly just an internal command)
without breaking something.

In I¥TEX3 we hope to improve this situation drastically
by clearly separating public interfaces (that extension
packages can use and rely on) and private functions and
variables (that should not appear outside of their mod-
ule). There is (nearly) no way to enforce this without
severe computing overhead, so we implement it only
through a naming convention, and some support mech-
anisms. However, we think that this naming conven-
tion is easy to understand and to follow, so that we are

IATEX3 News, and the INTEX software, are brought to you by the INTEX Project Team; Copyright 2012, all rights reserved. -13

confident that this will be adopted and provides the
desired results.

Naming convention for internals

We’ve been throwing around some ideas for this for a
number of years but nothing quite fit; the issue comes
down to the fact that TEX does not have a ‘name-
spacing’ mechanism so any internal command needs

to have a specific prefix to avoid clashing with other
packages’ commands. The prefix we have finally de-
cided on for expl3 code is a double underscore, such
that functions like \seq_count:N are intended for ex-
ternal use and __seq_item:n is an internal command
that should not be used or relied upon by others.

All this is well and good, but it can be inconvenient

to type long prefixes such as __seq_ before all com-
mand names, especially in a package for which nearly
all package functions are internal.

We therefore also extended DocStrip slightly by adding
a ‘shorthand’ for internal package prefixes. Commands
and variables in .dtx code may now contain @@ which
is expanded to the function prefix when the .sty file is
extracted. As an example, writing

%Q@Q=seq
\cs_new:Npn \@Q@_item:n

is equivalent to

\cs_new:Npn __seq_item:n

There are clear advantages to this syntax. Function
names are shorter and therefore easier to type, and
code can still be prototyped using the @@ syntax (e.g.,
pasting code between a .dtx file and a regular .tex
document). Most importantly, it is explicitly clear from
the code source which commands are intended to be
used externally and which should be avoided.

We hope that this syntax will prove popular; in our
initial experiments we think it works very well. In fact
we found a good number of smaller errors when being
forced to think about what is internal and what is an
external function.

Continual revolution—the ‘small bang’

In addition to the major additions introduced above,
Frank Mittelbach has been examining expl3 with a
fresh eye to resolve any outstanding issues in the con-
sistency or logic of the names of functions.

We are very mindful of the fact that for people to
find expl3 a useful tool, it must have a stable inter-
face. This said, there are still some musty corners that
we can show where people simply haven’t been using
certain functions. In select cases, we're re-assessing
whether all of the (sometimes esoteric) odds and ends
that have been added to expl3 really belong; in other

cases, it’s now clear that some naming or behaviour
choices weren’t correct the first time around.

To address this tarnish, we’re carefully making some
minor changes to parts of the expl3 interface and we’d
like to allay any fears that expl3 isn’t stable. The
expl3 language now offers a wide range of functions
plus their variants, and we’re talking about changing
but a very small percentage of these, and not common
ones at that. We don’t want it to become a mess, so we
think it’s better to tidy things up as we go. Follow the
LaTeX-L mailing list for such details as they arise.

-14

dropped/replaced:

The ETEX3 codebases ranges between these two ex-
tremes; the packages in 13packages are largely the
former while the modules composing expl3 are largely
the latter type. In both cases, the ‘external’ commands
(whether for document author or package writer) are
usually defined in terms of other internal package com-
mands that should not be used by anyone else, but of-
ten when reading the internal package code it’s not al-
ways clear which is which.

For IXTEX3 we are experimenting with an extension to
the DocStrip mechanism to provide a clear distinction
between internal and external package commands.

15

INTEX3 News

Issue 9, March 2014 (BTEX release 2014-03-01)

Contents

Hiatus?

Well, it’s been a busy couple of years. Work has slowed
on the WTEX3 codebase as all active members of the
team have been —shall we say — busily occupied with
more pressing concerns in their day-to-day activities.

Nonetheless, Joseph and Bruno have continued to
fine-tune the I¥TEX3 kernel and add-on packages.
Browsing through the commit history shows bug fixes
and improvements to documentation, test files, and in-
ternal code across the entire breadth of the codebase.

Members of the team have presented at two TUG
conferences since the last BTEX3 news. (Has it really
been so long?) In July 2012, Frank and Will travelled
to Boston; Frank discussed the challenges faced in the
past and continuing to the present day due to the limits
of the various TEX engines; and, Frank and Will to-
gether covered a brief history and recent developments
of the expl3 code.

In 2013, Joseph and Frank wrote a talk on complex
layouts, and the “layers” ideas discussed in I2TEX3;
Frank went to Tokyo in October to present the work.
Slides of and recordings from these talks are available
on the KTEX3 website.

These conferences are good opportunities to intro-
duce the expl3 language to a wider group of people; in
many cases, explaining the rationale behind why expl3
looks a little strange at first helps to convince the audi-
ence that it’s not so weird after all. In our experience,
anyone that’s been exposed to some of the more awk-
ward expansion aspects of TEX programming appreci-
ates how expl3 makes life much easier for us.

expl3 in the community

While things have been slightly quieter for the team,
more and more people are adopting expl3 for their own
use. A search on the TEX Stack Exchange website for
either “expl3” or “latex3” at time of writing yield
around one thousand results each.

In order to help standardise the prefixes used in expl3
modules, we have developed a registration procedure
for package authors (which amounts to little more than
notifying us that their package uses a specific prefix,
which will often be the name of the package itself).
Please contact us via the latex-1 mailing list to reg-
ister your module prefixes and package names; we ask
that you avoid using package names that begin with

INTEX3 News, and the INTEX software, are brought to you by the INTEX Project Team; Copyright 2014, all rights reserved.

13... since expl3 packages use this internally. Some au-
thors have started using the package prefix 1t3... as a
way of indicating their package builds on expl3 in some
way but is not maintained by the BTEX3 team.

In the prefix database at present, some thirty pack-
age prefixes are registered by fifteen separate individ-
uals (unrelated to The WTEX Project — the number of
course grows if you include packages by members of the
team). These packages cover a broad range of function-
ality:
acro Interface for creating (classes of) acronyms

hobby Hobby’s algorithm in PGF/TiKZ for drawing
optimally smooth curves.

chemmacros Typesetting in the field of chemistry.
classics Traditional-style citations for the classics.
conteq Continued (in)equalities in mathematics.

ctex A collection of macro packages and document
classes for Chinese typesetting.

endiagram Draw potential energy curve diagrams.
enotez Support for end-notes.

exsheets Question sheets and exams with metadata.
It3graph A graph data structure.

newlfm The venerable class for memos and letters.
fnpct Interaction between footnotes and punctuation.
GS1 Barcodes and so forth.

hobete Beamer theme for the Univ. of Hohenheim.
kantlipsum Generate sentences in Kant’s style.

lualatex-math Extended support for mathematics in
LualdTEX.
media9 Multimedia inclusion for Adobe Reader.

pkgloader Managing the options and loading order of
other packages.

substances Lists of chemicals, etc., in a document.
withargs Ephemeral macro use.

xecjk Support for CJK documents in XglATEX.

xpatch, regexpatch Patch command definitions.

xpeek Commands that peek ahead in the input stream.
xpinjin Automatically add pinyin to Chinese characters

zhnumber Typeset Chinese representations of numbers

-16

http://ctan.org/pkg/acro
http://ctan.org/pkg/hobby
http://ctan.org/pkg/chemmacros
http://ctan.org/pkg/classics
http://ctan.org/pkg/conteq
http://ctan.org/pkg/ctex
http://ctan.org/pkg/endiagram
http://ctan.org/pkg/enotez
http://ctan.org/pkg/exsheets
http://ctan.org/pkg/lt3graph
http://ctan.org/pkg/newlfm
http://ctan.org/pkg/fnpct
http://ctan.org/pkg/GS1
http://ctan.org/pkg/hobete
http://ctan.org/pkg/kantlipsum
http://ctan.org/pkg/lualatex-math
http://ctan.org/pkg/media9
http://ctan.org/pkg/pkgloader
http://ctan.org/pkg/substances
http://ctan.org/pkg/withargs
http://ctan.org/pkg/xecjk
http://ctan.org/pkg/xpatch
http://ctan.org/pkg/regexpatch
http://ctan.org/pkg/xpeek
http://ctan.org/pkg/xpinjin
http://ctan.org/pkg/zhnumber

zxjatype Standards-conforming typesetting of Japanese

for XqlATEX.

Some of these packages are marked by their authors as
experimental, but it is clear that these packages have
been developed to solve specific needs for typesetting
and document production.

The expl3 language has well and truly gained traction
after many years of waiting patiently.

A logo for the IATEX3 Programming Language

To show that expl3 is ready for general use Paulo
Cereda drew up a nice logo for us, showing a
hummingbird (agile and fast — but needs huge amounts
of energy) picking at “13”. Big thanks to Paulo!

Recent activity

X3 work has only slowed, not ground to a halt.
While changes have tended to be minor in recent times,
there are a number of improvements worth discussing
explicitly.

1. Bruno has extended the floating point code to
cover additional functions such as inverse trigono-
metric functions. These additions round out the
functionality well and make it viable for use in
most cases needing floating point mathematics.

2. Joseph’s refinement of the experimental galley code
now allows separation of paragraph shapes from
margins/cutouts. This still needs some testing!

3. For some time now expl3 has provided “native”
drivers although they have not been selected by
default in most cases. These have been revised to
improve robustness, which makes them probably
ready to enable by default. The improvements
made to the drivers have also fed back to more
“general” IXTEX code.

Work in progress

We're still actively discussing a variety of areas to
tackle next. We are aware of various “odds and ends”
in expl3 that still need sorting out. In particular, some
experimental functions have been working quite well
and it’s time to assess moving them into the “stable”
modules, in particular the 13str module for dealing with

catcode-twelve token lists more commonly known in
expl3 as strings.

Areas of active discussion including issues around up-
percasing and lowercasing (and the esoteric ways that
this can be achieved in TEX) and space skipping (or
not) in commands and environments with optional ar-
guments. These two issues are discussed next.

Uppercasing and lowercasing

The commands \t1l_to_lowercase:n and
\tl_to_uppercase:n have long been overdue for a
good hard look. From a traditional TEX viewpoint,
these commands are simply the primitive \lowercase
and \uppercase, and in practice it’s well known that
there are various limitations and peculiarities associ-
ated with them. We know these commands are good, to
one extent or another, for three things:

1. Uppercasing text for typesetting purposes such as
all-uppercase titles.

2. Lowercasing text for normalisation in sorting and
other applications such as filename comparisons.

3. Achieving special effects, in concert with manipu-
lating \uccode and the like, such as defining com-
mands that contain characters with different cat-
codes than usual.

We are working on providing a set of commands to
achieve all three of these functions in a more direct and
easy-to-use fashion, including support for Unicode in

LualfTEX and XgETEX.

-17

http://ctan.org/pkg/zxjatype

Space-skipping in xparse

We have also re-considered the behaviour of space-
skipping in xparse. Consider the following examples:

\begin{dmath} \begin{dmath}[label=foo]
x yz]l =[123] X2 +y°2 =272
\end{dmath} \end{dmath}

In the first case, we are typesetting some mathemat-
ics that contains square brackets. In the second, we are
assigning a label to the equation using an optional ar-
gument, which also uses brackets. The fact that both
work correctly is due to behaviour that is specifically
programmed into the workings of the dmath environ-
ment of breqn: spaces before an optional argument are
explicitly forbidden. At present, this is also how com-
mands and environments defined using xparse behave.
But consider a pgfplots environment:

\begin{pgfplot}
[
% plot options
]
\begin{axis}
L
% axis options

]

\end{axis}
\end{pgfplot}
This would seem like quite a natural way to write such
environments, but with the current state of xparse this
syntax would be incorrect. One would have to write
either of these instead:

\begin{pgfplotl}’ \begin{pgfplot}[
[% plot options
% plot options]
]

Is this an acceptable compromise? We’re not entirely
sure here — we’re in a corner because the humble [has
ended up being part of both the syntax and semantics
of a MTEX document.

Despite the current design covering most regular use-
cases, we have considered adding a further option to
xparse to define the space-skipping behaviour as desired
by a package author. But at this very moment we’ve
rejected adding this additional complexity, because en-
vironments that change their parsing behaviour based
on their intended use make a IWTEX-based language
more difficult to predict; one could imagine such be-
haviour causing difficulties down the road for automatic
syntax checkers and so forth. However, we don’t make
such decisions in a vacuum and we’re always happy to
continue to discuss such matters.

... and for 2014 onwards

There is one (understandable) misconception that
shows up once in a while with people claiming that

expl3 = KTEX3.
However, the correct relation would be a subset,
expl3 C BTEX3,

with expl3 forming the Core Language Layer on which
there will eventually be several other layers on top that
provide

e higher-level concepts for typesetting (Typesetting
Foundation Layer),

e a designer interface for specifying document struc-
tures and layouts (Designer Layer),

e and finally a Document Representation Layer that
implements document level syntax.

Of those four layers, the lowest one — expl3 —is avail-
able for use and with xparse we have an instance of the
Document Representation Layer modeled largely after
KTEX 2¢ syntax (there could be others). Both can be
successfully used within the current KTEX 2¢ framework
and as mentioned above this is increasingly happening.

The middle layers, however, where the rubber meets
the road, are still at the level of prototypes and ideas
(templates, Idb, galley, xor and all the good stuff) that
need to be revised and further developed to arrive at a
TEX3 environment that can stand on its own and that
is to where we want to return in 2014.

An overview on this can be found in the answer to
“What can *I* do to help The BTEX Project?” on
Stack Exchange,! which is reproduced below in slightly
abridged form. This is of course not the first time that
we have discussed such matters, and you can find sim-
ilar material in other publications such as those at
http://latex-project.org; e.g., the architecture talk
given at the TUG 2011 conference.

Ihttp://tex.stackexchange.com/questions/45838

—~18

http://latex-project.org
http://tex.stackexchange.com/questions/45838

What can you do for The IATEX Project?

By Frank Mittelbach

My vision of IATEX3 is really a system with multiple
layers that provide interfaces for different kinds of roles.
These layers are

e the underlying engine (some TEX variant)

e the programming layer (the core language, i.e.,
expl3)

e the typesetting foundation layer (providing higher-
level concepts for typesetting)

e the typesetting element layer (templates for all
types of document elements)

e the designer interface foundation layer

e the class designer layer (where instances of docu-
ment elements with specific settings are defined)

e document representation layer (that provides the
input syntax, i.e., how the author uses elements)

If you look at it from the perspective of user roles
then there are at least three or four roles that you can
clearly distinguish:

e The Programmer (template and functionality
provider)

e The Document Type Designer (defines which el-
ements are available; abstract syntax and seman-
tics)

e The Designer (typography and layout)

e The Author (content)

As a consequence The IATEX Project needs different
kinds of help depending on what layer or role we are
looking at.

The “Author” is using, say, list structures by spec-
ifying something like \begin{itemize} \item in his
documents. Or perhaps by writing ... or
whatever the UI representation offers to him.

The “Document Type Designer” defines what kind
of abstract document elements are available, and what
attributes or arguments those elements provide at the
author level. E.g., he may specify that a certain class
of documents provides the display lists “enumerate”,
“itemize” and “description”.

The “Programmer” on the other hand implements
templates (that offer customizations) for such docu-
ment elements, e.g., for display lists. What kind of cus-
tomization possibilities should be provided by the “Pro-
grammer” is the domain of the “Document Designer”;
he drives what kind of flexibility he needs for the de-
sign. In most cases the “Document Designer” should be
able to simply select templates (already written) from
a template library and only focus on the design, i.e.,

instantiating the templates with values so that the de-
sired layout for “itemize” lists, etc., is created.

In real life a single person may end up playing more
than one role, but it is important to recognise that all
of them come with different requirements with respect
to interfaces and functionality.

Programming Layer

The programming layer consists of a core language
layer (called expl3 (EXP erimental L aTeX 3) for his-
torical reasons and now we are stuck with it :-))
and two more components: the “Typesetting Founda-
tion Layer” that we are currently working on and the
“Typesetting Element Layer” that is going to provide
customizable objects for the design layer. While expl3
is in many parts already fairly complete and usable the
other two are under construction.

Help is needed for the programming layer in

e helping by extending and completing the regression
test suite for expl3

e helping with providing good or better documenta-
tion, including tutorials

e possibly helping in coding additional core function-
ality —but that requires, in contrast to the first
two points, a good amount of commitment and ex-
perience with the core language as otherwise the
danger is too high that the final results will end up
being inconsistent

Once we are a bit further along with the “Typeset-

ting Foundation Layer” we would need help in pro-
viding higher-level functionality, perhaps rewriting ex-
isting packages/code for elements making use of ex-
tended possibilities. Two steps down the road (once the
“Designer Layer” is closer to being finalized) we would
need help with developing templates for all kinds of ele-
ments.

In summary for this part, we need help from people
interested in programming in TEX and expl3 and/or
interested in providing documentation (but for this a
thorough understanding of the programming concepts
is necessary t00).

Design Layer

The intention of the design layer is to provide interfaces
that allow specifying layout and typography styles in
a declarative way. On the implementation side there
are a number of prototypes (most notably xtemplate
and the recent reimplementation of ldb). These need to
be unified into a common model which requires some
more experimentation and probably also some further
thoughts.

But the real importance of this layer is not the im-
plementation of its interfaces but the conceptual view

-19

of it: provisioning a rich declarative method (or meth-
ods) to describe design and layout. Le., enabling a de-
signer to think not in programs but in visual represen-
tations and relationships.

So here is the big area where people who do not feel
they can or want to program TEX’s bowels can help.
What would be extremely helpful (and in fact not just
for IATEX3) would be

e collecting and classifying a huge set of layouts and
designs
— designs for individual document elements
(such as headings, TOCs, etc)
— document designs that include relationships
between document elements

e thinking about good, declarative ways to specify
such designs

— what needs to be specified
— to what extent and with what flexibility

I believe that this is a huge task (but rewarding in it-
self) and already the first part of collecting existing
design specifications will be a major undertaking and
will need coordination and probably a lot of work. But
it will be a huge asset towards testing any implementa-
tions and interfaces for this layer later on.

Document Interface Layer

If we get the separation done correctly, then this layer
should effectively offer nothing more than a front end
for parsing the document syntax and transforming it
into an internal standardised form. This means that on
this layer one should not see any (or not much) coding
or computation.

It is envisioned that alternative document syntax
models can be provided. At the moment we have a
draft solution in xparse. This package offers a docu-
ment syntax in the style of INTEX 2¢, that is with *-
forms, optional arguments in brackets, etc., but with a
few more bells and whistles such as a more generalized
concept of default values, support for additional delim-
iters for arguments, verbatim-style arguments, and so
on. It is fairly conventional though. In addition when
it was written the clear separation of layers wasn’t well-
defined and so the package also contains components
for conditional programming that I no longer think
should be there.

Bottom line on what is needed for this layer is to

e think about good syntax for providing document
content from “the author” perspective

e think about good syntax for providing document
content from an “application to typesetting” per-
spective, i.e., the syntax and structure for auto-
mated typesetting where the content is prepared
by a system/application rather than by a human

These two areas most likely need strict structure (as
automation works much better with structures that do
not have a lot of alternative possibilities and shortcuts,
etc.) and even when just looking at the human author
a lot of open questions need answering. And these an-
swers may or may not be to painfully stick with exist-
ing INTEX 2¢ conventions in all cases (or perhaps with
any?).

None of this requires coding or expl3 experience.
What it requires is familiarity with existing input con-
cepts, a feel for where the pain points currently are and
the willingness to think and discuss what alternatives
and extensions could look like.

In Summary

Basically help is possible on any level and it doesn’t
need to involve programming. Thoughts are sprinkled
throughout this article, but here are a few more high-
lights:

e help with developing/improving the core program-
ming layer by

— joining the effort to improve the test suite

— help improving the existing (or not existing)
documentation

— joining the effort to produce core or auxiliary
code modules

e help on the design layer by

— collecting and classifying design tasks
— thinking and suggesting ways to describe lay-
out requirements in a declarative manner

e help on shaping the document interface layer

These concepts, as well as their implementation, are
under discussion on the list latex-1.? The list has
only a fairly low level of traffic right now as actual im-
plementation and development tasks are typically dis-
cussed directly among the few active implementers. But
this might change if more people join.

And something else . ..

The people on the KTEX3 team are also committed

to keeping I TEX 2¢ stable and even while there isn’t
that much to do these days there remains the need to
resolve bug reports (if they concern the 2e core), pro-
vide new distributions once in a while, etc. All this is
work that takes effort or remains undone or incomplete.
Thus here too, it helps the WTEX3 efforts if we get help
to free up resources.

2Instructions for joining and browsing archives at:
http://latex-project.org/code.html

-20

http://latex-project.org/code.html

INTEX3 News

Issue 10, November 2016 (IXTEX release 2016-11-01)

There has been something of a gap since the last
IXTEX3 News, but this does not mean that work has
not been going on. The Team have been working on a
number of areas, many of which reflect wider take-up
of expl3. There have also been a number of significant
new developments in the IXTEX3 “sphere” in the last
two years.

I3build: Testing IATEX packages

Testing has been an important part of the work of the
team since they assumed maintenance of IATEX over
twenty years ago. Various scripts have been used over
that time by the team for testing, but these have until
recently not been set up for wider use.

With the general availability of LuaTgX it is now
possible to be sure that every TEX user has a pow-
erful general scripting language available: Lua. The
team have used this to create a new general testing
system for TEX code, I3build. This is designed to be
used beyond the team, so is now available in TEX Live
and MiKTEX and is fully documented. Testing using
I3build makes use of a normalised version of the .log
file, so can test any aspect of TEX output (e.g., by us-
ing \showbox) or its algorithms (by displaying results
in the .log).

Part of the remit for creating I3build was to enable
the team to work truly cross-platform and to allow
testing using multiple TEX engines (earlier systems
were limited to a single engine, normally e-TEX). The
new testing system means we are in a much stronger
position to support a variety of engines (see below). It
has also enabled us to give useful feedback on develop-
ment of the LuaTEX engine.

As well as the core capability in testing, I3build also
provides a “one stop” script for creating release bun-
dles. The script is sufficiently flexible that for many
common IATEX package structures, setting up for cre-
ating releases will require only a few lines of configura-
tion.

In addition to the documentation distributed with
[3build, the project website [I, publications in 2014]
contains some articles, videos and conference presen-
tations that explain how to use I3build to manage and
test any type of (INTEX) package.

Automating expl3 testing

As well as developing 13build for local use, the team
have also set up integration testing for expl3 using the
Travis-CI system. This means that every commit to the
IATEX3 code base now results in a full set of tests be-
ing run. This has allowed us to significantly reduce the
number of occasions where expl3 needs attention before
being released to CTAN.

Automated testing has also enabled us to check that
expl3 updates do not break a number of key third-party
packages which use the programming environment.

Refining expl3

Work continues to improve expl3 both in scope and ro-
bustness. Increased use of the programming environ-
ment means that code which has to-date been under-
explored is being used, and this sometimes requires
changes to the code.

The team have extended formal support in expl3 to
cover the engines pTEX and upTEX, principally used
by Japanese TEX users. This has been possible in part
due to the I3build system discussed above. Engine-
dependent variations between pdfTEX, XHTEX, LualgX
and (u)pTEX are now well-understood and documented.
As part of this process, the “low-level” part of expl3,
which saves all primitives, now covers essentially all
primitives found in all of these engines.

The code in expl3 is now entirely self-contained, load-
ing no other third-party packages, and can also be
loaded as a generic package with plain TEX, etc. These
changes make it much easier to diagnose problems and
make expl3 more useful. In particular it can be used as
a programming language for generic packages, that then
can run without modifications under different formats!

The team have made a range of small refinements
to both internals and expl3 interfaces. Internal self-
consistency has also been improved, for example re-
moving almost all use of nopar functions. Performance
enhancements to the I13keys part of expl3 are ongoing
and should result in significantly faster key setting. As
keyval methods are increasingly widely used in defining
behaviours, this will have an impact on compile times
for end users.

Replacing \lowercase and \uppercase

As discussed in the last ITEX3 News, the team have
for some time been keen to provide new interfaces

IATEX3 News, and the INTEX software, are brought to you by the INTEX Project Team; Copyright 2016, all rights reserved. 21

which do not directly expose (or in some cases even
use) the TEX primitives \lowercase and \uppercase.
We have now created a series of different interfaces that
provide support for the different conceptual uses which
may flow from the primitives:

e For case changing text, \t1_upper_case:n, \tl_
lower_case:n, \tl_mixed_case:n and related
language-aware functions. These are Unicode-
capable and designed for working with text. They
also allow for accents, expansion of stored text and
leaving math mode unchanged. At present some of
the interface decisions are not finalised so they are
marked as experimental, but the team expect the
core concept to be stable.

e For case changing programming strings, \str_
upper_case:n, \str_lower_case:n and \str_
fold_case:n. Again these are Unicode-aware,
but in contrast to the functions for text are not
context-dependent. They are intended for caseless
comparisons, constructing command names on-the-
fly and so forth.

e For creating arbitrary character tokens, \char_
generate:nn. This is based on the \Ucharcat
primitive introduced by XHTEX, but with the ideas
extended to other engines. This function can be
used to create almost any reasonable token.

e For defining active characters, \char_set_active_
eq:NN and related functions. The concept here is
that active characters should be equivalent to some
named function, so one does not directly define the
active character.

Extending xparse

After discussions at TUG2015 and some experimen-
tation, the team have added a new argument type, e
(“embellishment”), to xparse. This allows arguments
similar to TEX primitive sub- and superscripts to be
accepted. Thus

\DeclareDocumentCommand\foo{e{"_}}
{\showtokens{"#1"}}
\foo~{Hello} world

will show
"{Hello}{-NoValue-3}".

At present, this argument type is experimental: there
are a number of models which may make sense for this
interface.

A new \parshape model

As part of development of 13galley, Joseph Wright has
proposed a new model for splitting up the functions of
the \parshape primitive into three logical elements:

e Margins between the edges of the galley and the
paragraph (for example an indented block);

e Cut-out sections running over a fixed number of
lines, to support “in place” figures and so forth;

e Running or single-paragraph shape.

There are additional elements to consider here, for
example whether lines are the best way to model the
length of shaping, how to handle headings, cut-outs at
page breaks, etc.

Globally optimized pagination of documents

Throughout 2016 Frank Mittelbach has worked on
methods and algorithms for globally optimizing the
pagination of documents including those that contain
floats. Early research results have been presented at
BachoTEX 2016, TUG 2016 in Toronto and later in

the year at DocEng’16, the ACM Symposium on Docu-
ment Engineering in Vienna. A link to the ACM paper
(that allows a download free of charge) can be found on
the project website [1]. The site also holds the speaker
notes from Toronto and will host a link to a video of
the presentation once it becomes available.

The framework developed by Frank is based on the
extended functionality provided by LualgX, in particu-
lar its callback functions that allow interacting with the
typesetting process at various points. The algorithm
that determines the optimal pagination of a given doc-
ument is implemented in Lua and its results are then
used to direct the formatting done by the TEX engine.

At the current point in time this a working proto-
type but not yet anywhere near a production-ready
system. However, the work so far shows great poten-
tial and Frank is fairly confident that it will eventually
become a generally usable solution.

Looking forward

The LuaTgX engine has recently reached version 1.0.
This may presage a stable LuaTgX and is likely to re-
sult in wider use of this engine in production docu-
ments.If that happens we expect to implement some of
the more complex functionality (such as complex pagi-
nation requirements and models) only for LuaTgX.

References

[1] Links to various publications by members of the
ETEX Project Team.
https://www.latex-project.org/publications.

-22

https://www.latex-project.org/publications

INTEX3 News

Issue 11, February 2018 (I4TEX release 2018-02-01)

Contents

Move of sources from Subversion to Git 23
Version identifiers. 23

expl3 updates and extensions 23
[3sort moves to the kernel 23
Boolean functions. oL 23
Revision of 13file 23
Detection of \cs_generate_variant:Nn errors 24
Accessing random data L. 24
More powerful debugging 24
Mark-up changes in 13doc 24

I13build updates 24

Move of sources from Subversion to Git

The ITEX team have used a variety of version control
systems over the life of the ITEX3 sources. For a long
time we maintained the IATEX3 sources in Subversion
(svn) but also provided a read-only clone of them
on GitHub using SubGit from TMate Software [1]
to synchronize the two repositories—a solution that
worked very well.

We have now retired the Subversion repository
and completely moved over to Git, with the master
ETEX3 repository hosted on GitHub: https://github.
com/latex3/latex3. This new approach means
we are (slowly) adopting some new approaches to
development, for example branches and accepting pull
requests.

Version identifiers

Following this change, we have removed Subversion $Id
lines from the IATEX3 sources. At present, we will be
retaining \GetIdInfo as there are several possible use
cases. The ITEX3 sources now have only release date
strings as identifiers. However, the team recommend
that package authors include version information
directly in \ProvidesExplPackage (or similar) lines.

expl3 updates and extensions

Work has continued on the codebase over the last year,
with both small changes/fixes and more substantial
changes taking place. The following sections summarise
some of the more notable changes.

IATEX3 News, and the INTEX software, are brought to you by the INTEX Project Team; Copyright 2018, all rights reserved.

13sort moves to the kernel

Sorting is an important ability, and for some time the
team have provided a stand-alone I3sort to support this.
The functionality has seen wide take up, and so has
now been integrated directly into the kernel. This took
place in parallel with some interface changes to “round
out” the code.

Boolean functions

For some time, the team have been aware that boolean
expressions can fail in certain circumstances, leading
to low-level errors. This is linked to two features of the
long-standing \bool_if :n(TF) function: expandable
operation and short-circuit evaluation.

Addressing that has meant two changes: altering
\bool_if:n(TF) to always evaluate each part of the
expression, and introducing new short-circuit functions
without the issue. The latter are lazy in expl3 terms:

e \bool_lazy_all:n(TF)
e \bool_lazy_and:nn(TF)
e \bool_lazy_any:n(TF)
e \bool_lazy_or:nn(TF)

These new, stable functions are now the recommended
way of handling boolean evaluations. Package authors
are encouraged to employ these new functions as
appropriate.

Revision of I3file

Large parts of 13file have been revised to give a better
separation of path/file/extension. This has resulted in
the addition of a number of new support functions and
variables.

At the same time, new experimental functions have
been added to utilise a number of useful primitives in
pdfTEX: \file_get_mdfive_hash:nN, \file_get_
size:nN and \file_get_timestamp:nN. Currently,
XHTEX does not support getting file size/timestamp
information: this is available in other engines.

Paralleling these changes, we have added
(experimental) support for shell escape to the |3sys
module, most notably \sys_shell_now:n. A range of
test booleans are also available to check whether shell
escape is enabled.

-23

https://github.com/latex3/latex3
https://github.com/latex3/latex3

Detection of \cs_generate_variant: Nn errors

The ability to generate variants is an important feature
of expl3. At the same time, there are crucial aspects

of this approach that can be misunderstood by users.
In particular, the requirement that variants map
correctly to an underlying N- or n-type base function

is sometimes misunderstood.

To help detect and correct these cases, \cs_
generate_variant:Nn now carries out error checking
on its arguments, and raises a warning where it is
mis-applied. At present, the team have avoided making
this an error as it is likely to be seen by end users
rather than directly by package developers. In time,
we are likely to revisit this and tighten up further on
this key requirement.

Accessing random data

To support randomised data selection, we have
introduced a family of experimental functions which
use underlying engine support for random values, and
provide one entry at random from the data type.

At the same time, we have addressed some issues
with uniformity stemming from the random number
function used by pdfTEX and inherited by other
engines. This means that expl3’s FPU will generate
pseudo-random values across the range of possible
outputs.

More powerful debugging

A new set of debugging functions have been added

to the kernel. These allow debug code to be enabled
locally using the new option enable-debug along

with functions \debug_on:n and \debug_off:n.
Accompanying this change, we have improved the
handling of global/local consistency in variable setting.

Mark-up changes in I3doc

Since the introduction of the __ syntax to mark
internal functions, the need for explicit markup of
internal material in sources has been negated. As

such, we have now dropped the requirement to mark
internal material with [aux] when using [3doc. Instead,
the status of functions and variables is auto-detected
from the presence of __. For cases where non-standard
names are used for internal code, the mark-up [int] is
retained, e.g.

\begin{macro} [int] {\1@expl@enable@debug@bool}

I13build updates

Work on [3build has continued in parallel with expl3
work, in particular continuing to develop features to
allow wider use of the tool.

Paralleling the move of the IXTEX3 codebase to Git,
[3build now has its own separate Git repository: https:
//github.com/latex3/13build. This will enable us
to involve other developers in the Lua code required
for the build system. At the same time, we have split
the code into a number of small source files, again to
ease development both for the team ourselves and for
potential collaborators.

Another major change is that 13build can now retain
the structure of source repositories when creating a
CTAN archive. Whilst the team favor ‘flat’ source
setups, other users prefer structured approaches. Most
notably, this new I3build functionality means that it is
now used to carry out beamer releases.

The other major new feature is a new approach
to multiple test setups, which replaces the older
--testfiledir option. In the new approach, separate
configuration files are listed in the main build.lua
script, and can be selected manually using a new
—--config switch. This new approach allows complex
test setups to be run in a totally automated fashion,
which is important for kernel testing.

Some changes to the normalisation routines have
been carried out, some to deal with upcoming LuaTgX
changes, others to address aspects which show up only
in some tests. This has required .tlg updates in some
cases: as far as possible, we strive to avoid requiring
changes to the reference files.

References
[1] SubGit, TMate Software, https://subgit.com

[2] Links to various publications by members of the
ETEX Project Team.
https://www.latex-project.org/publications

—24

https://github.com/latex3/l3build
https://github.com/latex3/l3build
https://subgit.com
https://www.latex-project.org/publications

INTEX3 News

Issue 12, January 2020 (IATEX release 2020-01-01)

Contents
Introduction

New features in expl3

A new argument specifier: e-type
New functions

String conversion moves to expl3

Case changing of text

Notable fixes and changes

File name parsing

Message formatting

Key inheritance

Floating point juxtaposition
Changing box dimensions

More functions moved to stable

Deprecations

Internal improvements
Cross-module functions

The backend

Better support for (u)pTEX
Options

Engine requirements

Documentation
News

ChangeLog
Changes in xparse
New experimental modules

I13build changes

25

25
25
25
26

26

26
26
26
26
26
26
26

26

26
26

27

27

27

27

27
27

27

27

27

27

Introduction

There has been quite a gap since the last BTEX3 News
(Issue 11, February 2018), and so there is quite a bit to
cover here. Luckily, one of the things there is to cover
is that we are using a more formalised approach for
logging changes, so writing up what has happened is

a bit easier. (By mistake IWTEX3 News 11 itself did not
get published when written, but is now available: we
have kept the information it contains separate as it is a
good summary of the work that had happened in 2017.)

Work has continued apace across the XTEX3
codebase in the last (nearly) two years. A lot of this
is ultimately focussed on making the core of expl3 even
more stable: squeezing out more experimental ideas,
refining ones we have and making it a serious option for
core IATEX programming.

As a result of these activities, the IXTEX3
programming layer will be available as part of the
kernel of IATEX 2¢ from 2020-02-02 onwards, i.e., can
be used without explicitly loading expl3. See HTpX
News 31 [2] for more details on this.

New features in expl3
A new argument specifier: e-type

During 2018, the team worked with the TEX Live,
XAqTEX and (u)pTEX developers to add the \expanded
primitive to pdfTEX, XgTEX and (u)pTEX. This
primitive was originally suggested for pdfTEX v1.50
(never released), and was present in LuaTgX from the
start of that project.

Adding \expanded lets us create a new argument
specifier: e-type expansion. This is almost the same as
x-type, but is itself expandable. (It also doesn’t need
doubled # tokens.) That’s incredibly useful for creating
function-like macros: you can ensure that everything is
expanded in an argument before you go near it, with
not an \expandafter in sight.

New functions

New programming tools have appeared in various
places across expl3. The highlights are

e Shuflling of sequences to allow randomization

e Arrays of integers and floating point values; these
have constant-time access

e Functions to return values after system shell usage

e Expandable access to file information, including file
size, MD5 hash and modification date

IATEX3 News, and the INTEX software, are brought to you by the INTEX Project Team; Copyright 2020, all rights reserved. —25

For the latter, we have revised handling of file names
considerably. There is now support for finding files
in expansion contexts (by using the \ (pdf)filesize
primitive). Spaces and quotes in file names are now
fully normalised, in a similar manner to the approach
used by the latest IXTEX 2¢ kernel.

String conversion moves to expl3

In addition to entirely new functions, the team have
moved the I3str-convert module from the |3experimental
bundle into the expl3 core. This module is essential for
dealing with the need to produce UTF-16 and UTF-32
strings in some contexts, and also offers built-in escape
for url and PDF strings.

Case changing of text

Within expl3, the team have renamed and reworked the
ideas from \t1l_upper_case:n and so on, creating a
new module [3text. This is a “final” home for functions
to manipulate text; token lists that can reasonably be
expected to expand to plain text plus limited markup,
for example emphasis and labels/references. Moving
these functions, we have also made a small number of
changes in other modules to give consistent names to
functions: see the change log for full details.

Over time, we anticipate that functions for other
textual manipulation will be added to this module.

Notable fixes and changes
File name parsing

The functions for parsing file names have been entirely
rewritten, partly as this is required for the expandable
access to file information mentioned above. The new
code correctly deals with spaces and quote marks in file
names and splits the path/name/extension.

Message formatting

The format of messages in expl3 was originally quite
text-heavy, the idea being that they would stand out
in the .log file. However, this made them hard to find
by a regular expression search, and was very different
from the IXTEX 2¢ message approach. The formatting
of expl3 messages has been aligned with that from the
TEX 2¢ kernel, such that IDE scripts and similar will
be able to find and extract them directly.

Key inheritance

A number of changes have been made to the
inheritance code for keys, to allow inheritance to work
“as expected” in (almost) all cases.

Floating point juxtaposition

Implicit multiplication by juxtaposition, such as 2pi,
is now handled separately from parenthetic values.
Thus for example 1in/1cm is treated as equal to

(1in)/(1cm) and thus yields 2.54, and 1/2(pi+pi)
is equal to pi.

Changing box dimensions

TEX’s handling of boxes is subtly different from other
registers, and this shows up in particular when you
want to resize a box. To bring treatment of boxes, or
rather the grouping behavior of boxes, into line with
other registers, we have made some internal changes to
how functions such as \box_set_wd:N are implemented.
This will be transparent for “well-behaved” use cases of
these functions.

More functions moved to stable

A large number of functions which were introduced as
candidates have been evaluated and moved to stable
status. The team hopes to move all functions in expl3
to stable status, or move them out of the core, over the
coming months.

Deprecations

There have been two notable sets of deprecations
over the past 18 months. First, we have rationalised
all of the “raw” primitive names to the form \tex_
<name>:D. This means that the older names, starting
\pdftex_..., \xetex_..., etc., have been removed.

Secondly, the use of integer constants, which dates
back to the earliest days of expl3, is today more likely
to make the code harder to read than anything else.
Speed improvements in engines mean that the tiny
enhancements in reading such constants are no longer
required. Thus for example \c_two is deprecated in
favour of simply using 2.

In parallel with this, a number of older .sty files
have been removed. These older files provided legacy
stubs for files which have now been integrated in the
expl3 core. They have now had sufficient time to allow
users to update their code.

Internal improvements
Cross-module functions

The team introduced the idea of internal module
functions some time ago. Within the kernel, there are
places where functions need to be used in multiple
modules. To make the nature of the kernel interactions
clearer, we have worked on several aspects

e Reducing as far as possible cross-module functions

e Making more generally-useful functions public, for
example scan marks

e Creating an explicit cross-kernel naming
convention for functions which are internal but are
essential to use in multiple kernel modules

—26

The backend

Creating graphics, working with color, setting up
hyperlinks and so on require backend-specific code.
Here, backends are for example dvips, xdvipdfmx and
the direct PDF mode in pdfTEX and LualEX. These
functions are needed across the ITEX3 codebase and
have to be updated separately from the expl3 core.

To facilitate that, we have split those sources into a
separate bundle, which can be updated as required.

At the same time, the code these files contain is
very low-level and is best described as internal. We
have re-structured how the entire set of functions are
referred to such that they are now internal for the area
they implement, for example image inclusion, box affine
transformations, etc.

Better support for (u)pTEX

The developers behind (u)pTEX (Japanese TEX) have
recently enhanced their English documentation (see
https://github.com/texjporg/ptex-manual). Using
this new information, we have been able to make
internal adjustments to expl3 to better support these
engines.

Options

A new option undo-recent-deprecations is now
available for cases where a document (or package)
requires some expl3 functions that have been formally
removed after deprecation. This is to allow temporary
work-arounds for documents to be compiled whilst code
is begin updated.

The “classical” options for selecting backends (dvips,
pdftex, etc.) are now recognised in addition to the
native key—value versions. This should make it much
easier to use the expl3 image and color support as it is
brought up to fully-workable standards.

Engine requirements

The minimum engine versions needed to use expl3 have
been incremented a little:

pdfTEX v1.40
XAIEX v0.99992
LuaTgX v0.95
e-(u)pTEX mid-2012

The team have also worked with the XH{TEX
and (u)pTEX developers to standardise the set of
post-e-TEX utility primitives that are available: the
so-called “pdfTEX utilities”. These are now available in
all supported engines, and in time will all be required.
This primarily impacts XHTEX, which gained most of
these primitives in the 2019 TgX Live cycle. (Examples
are the random number primitives and expandable file
data provision.) See KTEX News 31 [2] for more.

Documentation

News
The X3 News files were until recently only used to
create PDF files on the team website [1]. We have now

integrated those into the I3kernel (expl3 core) bundle.
The news files cover all of KTEX3 files, as the core files
are always available.

Changelog

Since the start of 2018, the team have commenced a
comprehensive change log for each of the bundles which
make up the IATEX3 code. These are simple Markdown
text files, which means that they can be displayed
formatted in web views.

Changes in xparse

A number of new features have been added to xparse.
To allow handling of the fact that skipping spaces

may be required only in some cases when searching

for optional arguments, a new modifier ! is available
in argument specifiers. This causes xparse to require
that an optional argument follows immediately with no
intervening spaces.

There is a new argument type purely for
environments: b-type for collecting a \begin. ..\end
pair, i.e., collecting the body of an environment. This
is similar in concept to the environ package, but is
integrated directly into xparse.

Finally, it is now possible to refer to one argument as
the default for another optional one, for example

\NewDocumentCommand{\caption}{0{#2} m} ...

New experimental modules

A number of new experimental modules have been
added within the |3experimental bundle:

I3benchmark Performance-testing system using the
timing function in modern TEX engines

13cctab Category code tables for all engines, not just
LuaTgX

13color Color support, similar in interface to xcolor

I3draw Creation of drawings, inspired by pgf, but using
the BTEX3 FPU for calculations

13pdf Support for PDF features such as compression,
hyperlinks, etc.

I13sys-shell Shell escape functions for file manipulation

I13build changes

The I13build tool for testing and releasing TEX packages
has seen a number of incremental improvements. It

is now available directly as a script in TEX Live and
MiKTgX, meaning you can call it simply as

—27

https://github.com/texjporg/ptex-manual

13build target

Accompanying this, we have added support for
installing scripts and script man files.

There is a new upload target that can take a zip file
and send it to CTAN: you just have to fill in release
information for this upload at the prompts.

Testing using PDF files rather than logs has been
heavily revised: this is vital for work on PDF tagging.
There is also better support for complex directory

structures, including the ability to manually

specify TDS location for all installed files. This is
particularly targeted at packages with both generic and
format-specific files to install.

References

[1] BTEX Project Website.
https://latex-project.org/
[2] BTEX 2: release newsletters on the BTEX Project

Website. https://latex-project.org/news/
latex2e-news/

—28

https://latex-project.org/
https://latex-project.org/news/latex2e-news/
https://latex-project.org/news/latex2e-news/

	Contents
	Issue 01, 2009/02
	Welcome to LaTeX3
	What currently exists
	What's happening now
	What's happening soon
	What's happening later

	Issue 02, 2009/06
	TeX Live and the expl3 code
	Planned updates
	New members
	Some specifics
	The next six months

	Issue 03, 2010/01
	Happy New Year
	Recent developments
	xparse
	xtemplate

	Upcoming plans
	Packages to tackle
	xhead
	galley

	Issue 04, 2010/07
	expl3 in practice
	New xpackages
	Developments with expl3
	TUG 2010 reflections

	Issue 05, 2011/01
	Happy new year
	The LPPL is now OSI-approved
	Reflections on 2010
	Current progress
	Plans for 2011

	Issue 06, 2011/06
	The LaTeX3 Team expands
	The `Big Bang'
	LaTeX3 on GitHub
	Next steps

	Issue 07, 2012/02
	After the `Big Bang'
	Deforming boxes
	A TeX-based regex engine
	xparse improves
	The galley
	Relationships between document items

	Issue 08, 2012/07
	Extended floating point support
	Regular expressions in TeX
	Separating internal and external code
	Naming convention for internals

	Continual revolution—the `small bang'

	Issue 09, 2014/03
	Hiatus?
	expl3 in the community
	Logo for the LaTeX3 Programming Language
	Recent activity
	Work in progress
	Uppercasing and lowercasing
	Space-skipping in xparse

	…and for 2014 onwards
	What can you do for The LaTeX Project?
	Programming Layer
	Design Layer
	Document Interface Layer
	In Summary
	And something else …

	Issue 10, 2016/11
	l3build: Testing LaTeX packages
	Automating expl3 testing
	Refining expl3
	Replacing \lowercase and \uppercase
	Extending xparse
	A new \parshape model
	Globally optimized pagination of documents
	Looking forward

	Issue 11, 2018/02
	Move of sources from Subversion to Git
	Version identifiers
	expl3 updates and extensions
	l3sort moves to the kernel
	Boolean functions
	Revision of l3file
	Detection of \cs_generate_variant:Nn errors
	Accessing random data
	More powerful debugging
	Mark-up changes in l3doc
	l3build updates

	Issue 12, 2020/01
	Introduction
	New features in expl3
	A new argument specifier: e-type
	New functions
	String conversion moves to expl3
	Case changing of text
	Notable fixes and changes
	File name parsing
	Message formatting
	Key inheritance
	Floating point juxtaposition
	Changing box dimensions
	More functions moved to stable
	Deprecations
	Internal improvements
	Cross-module functions
	The backend
	Better support for (u)pTeX
	Options
	Engine requirements
	Documentation
	News
	ChangeLog
	Changes in xparse
	New experimental modules
	l3build changes

