
Glossary of TEX terms used to describe LATEX3
functions

The LATEX Project∗

Released 2024-09-10

This file describes aspects of TEX programming that are relevant in a expl3 context.

1 Reading a file
Tokenization.

Treatment of spaces, such as the trap that \~~a is equivalent to \~a in expl3 syntax,
or that ~ fails to give a space at the beginning of a line.

2 Structure of tokens
We refer to the documentation of l3token for a complete description of all TEX tokens.
We distinguish the meaning of the token, which controls the expansion of the token and
its effect on TEX’s state, and its shape, which is used when comparing token lists such as
for delimited arguments. At any given time two tokens of the same shape automatically
have the same meaning, but the converse does not hold, and the meaning associated with
a given shape change when doing assignments.

Apart from a few exceptions, a token has one of the following shapes.

• A control sequence, characterized by the sequence of characters that constitute its
name: for instance, \use:n is a five-letter control sequence.

• An active character token, characterized by its character code (between 0 and
1114111 for LuaTEX and X ETEX and less for other engines) and category code 13.

• A character token such as A or #, characterized by its character code and category
code (one of 1, 2, 3, 4, 6, 7, 8, 10, 11 or 12 whose meaning is described below).

The meaning of a (non-active) character token is fixed by its category code (and
character code) and cannot be changed. We call these tokens explicit character tokens.
Category codes that a character token can have are listed below by giving a sample
output of the TEX primitive \meaning, together with their expl3 names and most common
example:

1 begin-group character (group_begin, often {),

2 end-group character (group_end, often }),
∗E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org


3 math shift character (math_toggle, often $),

4 alignment tab character (alignment, often &),

6 macro parameter character (parameter, often #),

7 superscript character (math_superscript, often ^),

8 subscript character (math_subscript, often _),

10 blank space (space, often character code 32),

11 the letter (letter, such as A),

12 the character (other, such as 0).
Category code 13 (active) is discussed below. Input characters can also have sev-
eral other category codes which do not lead to character tokens for later processing:
0 (escape), 5 (end_line), 9 (ignore), 14 (comment), and 15 (invalid).

The meaning of a control sequence or active character can be identical to that of any
character token listed above (with any character code), and we call such tokens implicit
character tokens. The meaning is otherwise in the following list:

• a macro, used in expl3 for most functions and some variables (tl, fp, seq, . . . ),

• a primitive such as \def or \topmark, used in expl3 for some functions,

• a register such as \count123, used in expl3 for the implementation of some variables
(int, dim, . . . ),

• a constant integer such as \char"56 or \mathchar"121, used when defining a con-
stant using \int_const:Nn,

• a font selection command,

• undefined.
Macros can be \protected or not, \long or not (the opposite of what expl3 calls nopar),
and \outer or not (unused in expl3). Their \meaning takes the form

⟨prefix⟩ macro:⟨argument⟩->⟨replacement⟩
where ⟨prefix⟩ is among \protected\long\outer, ⟨argument⟩ describes parameters
that the macro expects, such as #1#2#3, and ⟨replacement⟩ describes how the parame-
ters are manipulated, such as \int_eval:n{#2+#1*#3}. This information can be accessed
by \cs_prefix_spec:N, \cs_parameter_spec:N, \cs_replacement_spec:N.

When a macro takes an undelimited argument, explicit space characters (with char-
acter code 32 and category code 10) are ignored. If the following token is an explicit
character token with category code 1 (begin-group) and an arbitrary character code,
then TEX scans ahead to obtain an equal number of explicit character tokens with cate-
gory code 1 (begin-group) and 2 (end-group), and the resulting list of tokens (with outer
braces removed) becomes the argument. Otherwise, a single token is taken as the argu-
ment for the macro: we call such single tokens “N-type”, as they are suitable to be used
as an argument for a function with the signature :N.

When a macro takes a delimited argument TEX scans ahead until finding the delim-
iter (outside any pairs of begin-group/end-group explicit characters), and the resulting
list of tokens (with outer braces removed) becomes the argument. Note that explicit
space characters at the start of the argument are not ignored in this case (and they
prevent brace-stripping).

2



3 Handling of hash tokens
TEX uses the hash (octothorpe) character # to denote parameters for macros: these must
be numbered sequentially. To allow handling of nested macros, TEX requires that for
each nesting level, hash tokens are doubled. For example

s_new:Npn \mypkg_outer:N #1
{

\cs_new:Npn \mypkg_inner:N ##1
{

#1
##1

}
}

would define both \mypkg_outer:N and \mypkg_inner:N as taking exactly one argument.
If we then do

ypkg_outer:N \foo
s_show:N \mypkg_inner:N

TEX will report

\mypkg_inner:N=\long macro:#1->\foo #1.

i.e. the hash is not doubled, but is now the parameter of this macro.
Exactly the same concept applies to anywhere that inline code is nested in expl3, for

example inline mapping code, key definitions, etc.

3


	1 Reading a file
	2 Structure of tokens
	3 Handling of hash tokens

