Purpose
To apply 10 iterations of a real single shifted periodic QZ algorithm to the 2-by-2 product of matrices stored in the array A.Specification
SUBROUTINE MB03BE( K, AMAP, S, SINV, A, LDA1, LDA2 )
C .. Scalar Arguments ..
INTEGER K, LDA1, LDA2, SINV
C .. Array Arguments ..
INTEGER AMAP(*), S(*)
DOUBLE PRECISION A(LDA1,LDA2,*)
Arguments
Input/Output Parameters
K (input) INTEGER
The number of factors. K >= 1.
AMAP (input) INTEGER array, dimension (K)
The map for accessing the factors, i.e., if AMAP(I) = J,
then the factor A_I is stored at the J-th position in A.
S (input) INTEGER array, dimension (K)
The signature array. Each entry of S must be 1 or -1.
SINV (input) INTEGER
Signature multiplier. Entries of S are virtually
multiplied by SINV.
A (input/output) DOUBLE PRECISION array, dimension
(LDA1,LDA2,K)
On entry, the leading 2-by-2-by-K part of this array must
contain a 2-by-2 product (implicitly represented by its K
factors) in upper Hessenberg form.
On exit, the leading 2-by-2-by-K part of this array
contains the product after 10 iterations of a real shifted
periodic QZ algorithm.
LDA1 INTEGER
The first leading dimension of the array A. LDA1 >= 2.
LDA2 INTEGER
The second leading dimension of the array A. LDA2 >= 2.
Method
Ten iterations of a real single shifted periodic QZ algorithm are applied to the 2-by-2 matrix product A.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None